Cargando…
The Blood-Brain Barrier Permeability of Lignans and Malabaricones from the Seeds of Myristica fragrans in the MDCK-pHaMDR Cell Monolayer Model
The blood-brain barrier (BBB) permeability of twelve lignans and three phenolic malabaricones from the seeds of Myristica fragrans (nutmeg) were studied with the MDCK-pHaMDR cell monolayer model. The samples were measured by high-performance liquid chromatography and the apparent permeability coeffi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274353/ https://www.ncbi.nlm.nih.gov/pubmed/26805808 http://dx.doi.org/10.3390/molecules21020134 |
Sumario: | The blood-brain barrier (BBB) permeability of twelve lignans and three phenolic malabaricones from the seeds of Myristica fragrans (nutmeg) were studied with the MDCK-pHaMDR cell monolayer model. The samples were measured by high-performance liquid chromatography and the apparent permeability coefficients (P(app)) were calculated. Among the fifteen test compounds, benzonfuran-type, dibenzylbutane-type and arylnaphthalene-type lignans showed poor to moderate permeabilities with P(app) values at 10(−8)–10(−6) cm/s; those of 8-O-4′-neolignan and tetrahydrofuran-lignan were at 10(−6)–10(−5) cm/s, meaning that their permeabilities are moderate to high; the permeabilities of malabaricones were poor as their P(app) values were at 10(−8)–10(−7) cm/s. To 5-methoxy-dehydrodiisoeugenol (2), erythro-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-propan-1-ol acetate (6), verrucosin (8), and nectandrin B (9), an efflux way was involved and the main transporter for 6, 8 and 9 was demonstrated to be P-glycoprotein. The time and concentration dependency experiments indicated the main transport mechanism for neolignans dehydrodiisoeugenol (1), myrislignan (7) and 8 was passive diffusion. This study summarized the relationship between the BBB permeability and structure parameters of the test compounds, which could be used to preliminarily predict the transport of a compound through BBB. The results provide a significant molecular basis for better understanding the potential central nervous system effects of nutmeg. |
---|