Cargando…

Secondary Metabolites from the Deep-Sea Derived Fungus Acaromyces ingoldii FS121

Activity-guided isolation of the fermentation broth of the deep-sea derived fungus Acaromyces ingoldii FS121, which was obtained from the China South Sea, yielded a new naphtha-[2,3-b]pyrandione analogue, acaromycin A (1) and a new thiazole analogue, acaromyester A (2), as well as the known compound...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Xiao-Wei, Liu, Hong-Xin, Sun, Zhang-Hua, Chen, Yu-Chan, Tan, Yu-Zhi, Zhang, Wei-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274379/
http://dx.doi.org/10.3390/molecules21040371
Descripción
Sumario:Activity-guided isolation of the fermentation broth of the deep-sea derived fungus Acaromyces ingoldii FS121, which was obtained from the China South Sea, yielded a new naphtha-[2,3-b]pyrandione analogue, acaromycin A (1) and a new thiazole analogue, acaromyester A (2), as well as the known compound (+)-cryptosporin (3). Their structures, including absolute configurations, were determined by extensive spectroscopic analysis and electronic circular dichroism (ECD) spectra. Compounds 1–3 were evaluated for in vitro growth inhibitory activities against four tumor cell lines (MCF-7, NCI-H460, SF-268 and HepG-2), wherein compounds 1 and 3 exhibited considerable growth inhibitory effects, with IC(50) values less than 10 µM.