Cargando…
iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets
Knowledge of protein-protein interactions and their binding sites is indispensable for in-depth understanding of the networks in living cells. With the avalanche of protein sequences generated in the postgenomic age, it is critical to develop computational methods for identifying in a timely fashion...
Autores principales: | Jia, Jianhua, Liu, Zi, Xiao, Xuan, Liu, Bingxiang, Chou, Kuo-Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274413/ https://www.ncbi.nlm.nih.gov/pubmed/26797600 http://dx.doi.org/10.3390/molecules21010095 |
Ejemplares similares
-
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018) -
iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC
por: Jia, Jianhua, et al.
Publicado: (2016) -
iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier
por: Qiu, Wang-Ren, et al.
Publicado: (2016) -
An empirical study of ensemble-based semi-supervised learning approaches for imbalanced splice site datasets
por: Stanescu, Ana, et al.
Publicado: (2015) -
Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
por: Klikowski, Jakub, et al.
Publicado: (2020)