Cargando…
Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis
We examined the mechanisms of chronic liver steatosis after prenatal dexamethasone exposure and whether melatonin rescues adult offspring with liver steatosis. Melatonin rescued prenatal dexamethasone-exposed livers with steatosis in young rats. Sprague-Dawley rats pregnant at gestational day 14–21...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274685/ https://www.ncbi.nlm.nih.gov/pubmed/30424542 http://dx.doi.org/10.3390/ijms19113565 |
_version_ | 1783377664057278464 |
---|---|
author | Tsai, Ching-Chou Lin, Yu-Ju Yu, Hong-Ren Sheen, Jiunn-Ming Lin, I-Chun Lai, Yun-Ju Tain, You-Lin Huang, Li-Tung Tiao, Mao-Meng |
author_facet | Tsai, Ching-Chou Lin, Yu-Ju Yu, Hong-Ren Sheen, Jiunn-Ming Lin, I-Chun Lai, Yun-Ju Tain, You-Lin Huang, Li-Tung Tiao, Mao-Meng |
author_sort | Tsai, Ching-Chou |
collection | PubMed |
description | We examined the mechanisms of chronic liver steatosis after prenatal dexamethasone exposure and whether melatonin rescues adult offspring with liver steatosis. Melatonin rescued prenatal dexamethasone-exposed livers with steatosis in young rats. Sprague-Dawley rats pregnant at gestational day 14–21 were administered with intraperitoneal dexamethasone (DEX) or prenatal dexamethasone and melatonin between gestational day 14 and postnatal day ~120 (DEX+MEL). Chronic programming effects in the liver were assessed at day ~120. Liver steatosis increased in the DEX compared with that in the vehicle group and decreased in the DEX+MEL group (p < 0.05), with no changes in cellular apoptosis. Expression of leptin and its receptor decreased in the DEX (p < 0.05) and increased in the DEX+MEL group (p < 0.05), as revealed by RT-PCR and Western blotting. Tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 expression increased in the DEX group compared with that in the vehicle group and decreased in the DEX+MEL group (p < 0.05). Liver DNA methyltransferase activity and leptin methylation increased in the DEX group (p < 0.05) and decreased in the DEX+MEL group (p < 0.05), with no changes in HDAC activity. Thus, prenatal dexamethasone induces liver steatosis at ~120 days via altered leptin expression and liver inflammation without leptin resistance. Melatonin reverses leptin methylation and expression and decreases inflammation and chronic liver steatosis not via apoptosis or histone deacetylation (HDAC). |
format | Online Article Text |
id | pubmed-6274685 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62746852018-12-15 Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis Tsai, Ching-Chou Lin, Yu-Ju Yu, Hong-Ren Sheen, Jiunn-Ming Lin, I-Chun Lai, Yun-Ju Tain, You-Lin Huang, Li-Tung Tiao, Mao-Meng Int J Mol Sci Article We examined the mechanisms of chronic liver steatosis after prenatal dexamethasone exposure and whether melatonin rescues adult offspring with liver steatosis. Melatonin rescued prenatal dexamethasone-exposed livers with steatosis in young rats. Sprague-Dawley rats pregnant at gestational day 14–21 were administered with intraperitoneal dexamethasone (DEX) or prenatal dexamethasone and melatonin between gestational day 14 and postnatal day ~120 (DEX+MEL). Chronic programming effects in the liver were assessed at day ~120. Liver steatosis increased in the DEX compared with that in the vehicle group and decreased in the DEX+MEL group (p < 0.05), with no changes in cellular apoptosis. Expression of leptin and its receptor decreased in the DEX (p < 0.05) and increased in the DEX+MEL group (p < 0.05), as revealed by RT-PCR and Western blotting. Tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 expression increased in the DEX group compared with that in the vehicle group and decreased in the DEX+MEL group (p < 0.05). Liver DNA methyltransferase activity and leptin methylation increased in the DEX group (p < 0.05) and decreased in the DEX+MEL group (p < 0.05), with no changes in HDAC activity. Thus, prenatal dexamethasone induces liver steatosis at ~120 days via altered leptin expression and liver inflammation without leptin resistance. Melatonin reverses leptin methylation and expression and decreases inflammation and chronic liver steatosis not via apoptosis or histone deacetylation (HDAC). MDPI 2018-11-12 /pmc/articles/PMC6274685/ /pubmed/30424542 http://dx.doi.org/10.3390/ijms19113565 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tsai, Ching-Chou Lin, Yu-Ju Yu, Hong-Ren Sheen, Jiunn-Ming Lin, I-Chun Lai, Yun-Ju Tain, You-Lin Huang, Li-Tung Tiao, Mao-Meng Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis |
title | Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis |
title_full | Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis |
title_fullStr | Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis |
title_full_unstemmed | Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis |
title_short | Regulation of Leptin Methylation Not via Apoptosis by Melatonin in the Rescue of Chronic Programming Liver Steatosis |
title_sort | regulation of leptin methylation not via apoptosis by melatonin in the rescue of chronic programming liver steatosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274685/ https://www.ncbi.nlm.nih.gov/pubmed/30424542 http://dx.doi.org/10.3390/ijms19113565 |
work_keys_str_mv | AT tsaichingchou regulationofleptinmethylationnotviaapoptosisbymelatoninintherescueofchronicprogrammingliversteatosis AT linyuju regulationofleptinmethylationnotviaapoptosisbymelatoninintherescueofchronicprogrammingliversteatosis AT yuhongren regulationofleptinmethylationnotviaapoptosisbymelatoninintherescueofchronicprogrammingliversteatosis AT sheenjiunnming regulationofleptinmethylationnotviaapoptosisbymelatoninintherescueofchronicprogrammingliversteatosis AT linichun regulationofleptinmethylationnotviaapoptosisbymelatoninintherescueofchronicprogrammingliversteatosis AT laiyunju regulationofleptinmethylationnotviaapoptosisbymelatoninintherescueofchronicprogrammingliversteatosis AT tainyoulin regulationofleptinmethylationnotviaapoptosisbymelatoninintherescueofchronicprogrammingliversteatosis AT huanglitung regulationofleptinmethylationnotviaapoptosisbymelatoninintherescueofchronicprogrammingliversteatosis AT tiaomaomeng regulationofleptinmethylationnotviaapoptosisbymelatoninintherescueofchronicprogrammingliversteatosis |