Cargando…

High Catalytic Activity of Lipase from Yarrowia lipolytica Immobilized by Microencapsulation

Microencapsulation of lipase from Yarrowia lipolytica IMUFRJ 50682 was performed by ionotropic gelation with sodium alginate. Sodium alginate, calcium chloride and chitosan concentrations as well as complexation time were evaluated through experimental designs to increase immobilization yield (IY) a...

Descripción completa

Detalles Bibliográficos
Autores principales: da S. Pereira, Adejanildo, L. Fraga, Jully, M. Diniz, Marianne, C. Fontes-Sant’Ana, Gizele, F. F. Amaral, Priscilla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274688/
https://www.ncbi.nlm.nih.gov/pubmed/30380703
http://dx.doi.org/10.3390/ijms19113393
Descripción
Sumario:Microencapsulation of lipase from Yarrowia lipolytica IMUFRJ 50682 was performed by ionotropic gelation with sodium alginate. Sodium alginate, calcium chloride and chitosan concentrations as well as complexation time were evaluated through experimental designs to increase immobilization yield (IY) and immobilized lipase activity (ImLipA) using p-nitrophenyl laurate as substrate. To adjust both parameters (IY and ImLipA), the desirability function showed that microcapsule formation with 3.1%(w/v) sodium alginate, 0.19%(w/v) chitosan, 0.14 M calcium chloride, and 1 min complexation time are ideal for maximal immobilization yield and immobilized lipase activity. A nearly twofold enhancement in Immobilization yield and an increase up to 280 U/g of the lipase activity of the microcapsules were achieved using the experimental design optimization tool. Chitosan was vital for the high activity of this new biocatalyst, which could be reused a second time with about 50% of initial activity and for four more times with about 20% of activity.