Cargando…
Causal Transcription Regulatory Network Inference Using Enhancer Activity as a Causal Anchor
Transcription control plays a crucial role in establishing a unique gene expression signature for each of the hundreds of mammalian cell types. Though gene expression data have been widely used to infer cellular regulatory networks, existing methods mainly infer correlations rather than causality. W...
Autores principales: | Vipin, Deepti, Wang, Lingfei, Devailly, Guillaume, Michoel, Tom, Joshi, Anagha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274755/ https://www.ncbi.nlm.nih.gov/pubmed/30445760 http://dx.doi.org/10.3390/ijms19113609 |
Ejemplares similares
-
Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data
por: Wang, Lingfei, et al.
Publicado: (2017) -
Variable reproducibility in genome-scale public data: A case study using ENCODE ChIP sequencing resource
por: Devailly, Guillaume, et al.
Publicado: (2015) -
Meta-analysis of Liver and Heart Transcriptomic Data for Functional
Annotation Transfer in Mammalian Orthologs
por: Reyes, Pía Francesca Loren, et al.
Publicado: (2017) -
Structural and functional organization of RNA regulons in the post-transcriptional regulatory network of yeast
por: Joshi, Anagha, et al.
Publicado: (2011) -
Inferring the conservative causal core of gene regulatory networks
por: Altay, Gökmen, et al.
Publicado: (2010)