Cargando…
Adaptation Mechanism of Salt Excluders under Saline Conditions and Its Applications
Global soil salinization is increasingly a serious threat to agriculture worldwide. Therefore, it is imperative to improve crop salt tolerance as a means of adaptation to saline habitats. Some halophytes and most monocotyledonous crops are salt-excluders. Understanding the regulatory mechanisms of s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274768/ https://www.ncbi.nlm.nih.gov/pubmed/30463331 http://dx.doi.org/10.3390/ijms19113668 |
Sumario: | Global soil salinization is increasingly a serious threat to agriculture worldwide. Therefore, it is imperative to improve crop salt tolerance as a means of adaptation to saline habitats. Some halophytes and most monocotyledonous crops are salt-excluders. Understanding the regulatory mechanisms of salt exclusion at the molecular level in salt-exclusion plants is critical for improving the salt tolerance of monocotyledonous crops such as maize, wheat, rice, and sorghum. In this review, we summarize recent research into salt-exclusion mechanisms and the genes that underlie them. Findings related to salt exclusion may accelerate the process of breeding tolerant cultivars by using genomic and molecular tools. |
---|