Cargando…
Reconstituted HDL (Milano) Treatment Efficaciously Reverses Heart Failure with Preserved Ejection Fraction in Mice
Heart failure with preserved ejection fraction (HFpEF) represents a major unmet therapeutic need. This study investigated whether feeding coconut oil (CC diet) for 26 weeks in female C57BL/6N mice induces HFpEF and evaluated the effect of reconstituted high-density lipoprotein (HDL)(Milano) (MDCO-21...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274776/ https://www.ncbi.nlm.nih.gov/pubmed/30380754 http://dx.doi.org/10.3390/ijms19113399 |
Sumario: | Heart failure with preserved ejection fraction (HFpEF) represents a major unmet therapeutic need. This study investigated whether feeding coconut oil (CC diet) for 26 weeks in female C57BL/6N mice induces HFpEF and evaluated the effect of reconstituted high-density lipoprotein (HDL)(Milano) (MDCO-216) administration on established HFpEF. Eight intraperitoneal injections of MDCO-216 (100 mg/kg protein concentration) or of an equivalent volume of control buffer were executed with a 48-h interval starting at 26 weeks after the initiation of the diet. Feeding the CC diet for 26 weeks induced pathological left ventricular hypertrophy characterized by a 17.1% (p < 0.0001) lower myocardial capillary density and markedly (p < 0.0001) increased interstitial fibrosis compared to standard chow (SC) diet mice. Parameters of systolic and diastolic function were significantly impaired in CC diet mice resulting in a reduced stroke volume, decreased cardiac output, and impaired ventriculo-arterial coupling. However, ejection fraction was preserved. Administration of MDCO-216 in CC diet mice reduced cardiac hypertrophy, increased capillary density (p < 0.01), and reduced interstitial fibrosis (p < 0.01). MDCO-216 treatment completely normalized cardiac function, lowered myocardial acetyl-coenzyme A carboxylase levels, and decreased myocardial transforming growth factor-β1 in CC diet mice. In conclusion, the CC diet induced HFpEF. Reconstituted HDL(Milano) reversed pathological remodeling and functional cardiac abnormalities. |
---|