Cargando…
Classifying Incomplete Gene-Expression Data: Ensemble Learning with Non-Pre-Imputation Feature Filtering and Best-First Search Technique
(1) Background: Gene-expression data usually contain missing values (MVs). Numerous methods focused on how to estimate MVs have been proposed in the past few years. Recent studies show that those imputation algorithms made little difference in classification. Thus, some scholars believe that how to...
Autores principales: | Yan, Yuanting, Dai, Tao, Yang, Meili, Du, Xiuquan, Zhang, Yiwen, Zhang, Yanping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274900/ https://www.ncbi.nlm.nih.gov/pubmed/30380746 http://dx.doi.org/10.3390/ijms19113398 |
Ejemplares similares
-
Impact of pre-imputation SNP-filtering on genotype imputation results
por: Roshyara, Nab Raj, et al.
Publicado: (2014) -
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014) -
Phenotype Recognition with Combined Features and Random Subspace Classifier Ensemble
por: Zhang, Bailing, et al.
Publicado: (2011) -
Prediction of Lysine Ubiquitylation with Ensemble Classifier and Feature Selection
por: Zhao, Xiaowei, et al.
Publicado: (2011) -
Multiple imputation and analysis for high‐dimensional incomplete proteomics data
por: Yin, Xiaoyan, et al.
Publicado: (2015)