Cargando…

Optimized Clump Culture Methods for Adult Human Multipotent Neural Cells

Adult human multipotent neural cell (ahMNC) is a candidate for regeneration therapy for neurodegenerative diseases. Here, we developed a primary clump culture method for ahMNCs to increase the efficiency of isolation and in vitro expansion. The same amount of human temporal lobe (1 g) was partially...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeon, Je Young, Hwang, Ji-Yoon, Lee, Hye Won, Pyeon, Hee-Jang, Won, Jeong-Seob, Noh, Yoo-Jung, Nam, Hyun, Joo, Kyeung Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274905/
https://www.ncbi.nlm.nih.gov/pubmed/30380605
http://dx.doi.org/10.3390/ijms19113380
Descripción
Sumario:Adult human multipotent neural cell (ahMNC) is a candidate for regeneration therapy for neurodegenerative diseases. Here, we developed a primary clump culture method for ahMNCs to increase the efficiency of isolation and in vitro expansion. The same amount of human temporal lobe (1 g) was partially digested and then filtered through strainers with various pore sizes, resulting in four types of clumps: Clump I > 100 µm, 70 µm < Clump II < 100 µm, 40 µm < Clump III < 70 µm, and Clump IV < 40 µm. At 3 and 6 days after culture, Clump II showed significantly higher number of colonies than the other Clumps. Moreover, ahMNCs derived from Clump II (ahMNCs-Clump II) showed stable proliferation, and shortened the time to first passage from 19 to 15 days, and the time to 1 × 10(9) cells from 42 to 34 days compared with the previous single-cell method. ahMNCs-Clump II had neural differentiation and pro-angiogenic potentials, which are the characteristics of ahMNCs. In conclusion, the novel clump culture method for ahMNCs has significantly higher efficiency than previous techniques. Considering the small amount of available human brain tissue, the clump culture method would promote further clinical applications of ahMNCs.