Cargando…
Oral Intake of Collagen Peptide Attenuates Ultraviolet B Irradiation-Induced Skin Dehydration In Vivo by Regulating Hyaluronic Acid Synthesis
Collagen peptide (CP) has beneficial effects on functions of the skin, such as skin barrier function and skin elasticity, in vivo. However, there are few studies investigating the mechanism underlying the potential effects of CP in skin epidermal moisturization after ultraviolet B (UVB) irradiation....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274925/ https://www.ncbi.nlm.nih.gov/pubmed/30423867 http://dx.doi.org/10.3390/ijms19113551 |
_version_ | 1783377720745394176 |
---|---|
author | Kang, Min Cheol Yumnam, Silvia Kim, Sun Yeou |
author_facet | Kang, Min Cheol Yumnam, Silvia Kim, Sun Yeou |
author_sort | Kang, Min Cheol |
collection | PubMed |
description | Collagen peptide (CP) has beneficial effects on functions of the skin, such as skin barrier function and skin elasticity, in vivo. However, there are few studies investigating the mechanism underlying the potential effects of CP in skin epidermal moisturization after ultraviolet B (UVB) irradiation. In this study, we examined whether orally-administered CP affects the loss of skin hydration induced by UVB irradiation in hairless mice. SKH-1 hairless mice were orally administered CP at two doses (500 and 1000 mg/kg) for nine weeks, and the dorsal skin was exposed to UVB. The potential effects of CP were evaluated by measuring the transepidermal water loss (TEWL), skin hydration, wrinkle formation, and hyaluronic acid expression in the dorsal mice skin. We found that oral administration of CP increased skin hydration and decreased wrinkle formation compared to the UVB-irradiated group. Treatment of CP increased the mRNA and protein expression of hyaluronic acid synthases (HAS-1 and -2) concomitant with an increased hyaluronic acid production in skin tissue. The expression of hyaluronidase (HYAL-1 and 2) mRNA was downregulated in the CP-treated group. In addition, the protein expression of skin-hydrating factors, filaggrin and involucrin, was upregulated via oral administration of CP. In summary, these results show that oral administration of CP increases hyaluronic acid levels, which decreases during UVB photoaging. Therefore, we suggest that CP can be used as a nutricosmetic ingredient with potential effects on UVB-induced skin dehydration and moisture loss in addition to wrinkle formation. |
format | Online Article Text |
id | pubmed-6274925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62749252018-12-15 Oral Intake of Collagen Peptide Attenuates Ultraviolet B Irradiation-Induced Skin Dehydration In Vivo by Regulating Hyaluronic Acid Synthesis Kang, Min Cheol Yumnam, Silvia Kim, Sun Yeou Int J Mol Sci Article Collagen peptide (CP) has beneficial effects on functions of the skin, such as skin barrier function and skin elasticity, in vivo. However, there are few studies investigating the mechanism underlying the potential effects of CP in skin epidermal moisturization after ultraviolet B (UVB) irradiation. In this study, we examined whether orally-administered CP affects the loss of skin hydration induced by UVB irradiation in hairless mice. SKH-1 hairless mice were orally administered CP at two doses (500 and 1000 mg/kg) for nine weeks, and the dorsal skin was exposed to UVB. The potential effects of CP were evaluated by measuring the transepidermal water loss (TEWL), skin hydration, wrinkle formation, and hyaluronic acid expression in the dorsal mice skin. We found that oral administration of CP increased skin hydration and decreased wrinkle formation compared to the UVB-irradiated group. Treatment of CP increased the mRNA and protein expression of hyaluronic acid synthases (HAS-1 and -2) concomitant with an increased hyaluronic acid production in skin tissue. The expression of hyaluronidase (HYAL-1 and 2) mRNA was downregulated in the CP-treated group. In addition, the protein expression of skin-hydrating factors, filaggrin and involucrin, was upregulated via oral administration of CP. In summary, these results show that oral administration of CP increases hyaluronic acid levels, which decreases during UVB photoaging. Therefore, we suggest that CP can be used as a nutricosmetic ingredient with potential effects on UVB-induced skin dehydration and moisture loss in addition to wrinkle formation. MDPI 2018-11-11 /pmc/articles/PMC6274925/ /pubmed/30423867 http://dx.doi.org/10.3390/ijms19113551 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kang, Min Cheol Yumnam, Silvia Kim, Sun Yeou Oral Intake of Collagen Peptide Attenuates Ultraviolet B Irradiation-Induced Skin Dehydration In Vivo by Regulating Hyaluronic Acid Synthesis |
title | Oral Intake of Collagen Peptide Attenuates Ultraviolet B Irradiation-Induced Skin Dehydration In Vivo by Regulating Hyaluronic Acid Synthesis |
title_full | Oral Intake of Collagen Peptide Attenuates Ultraviolet B Irradiation-Induced Skin Dehydration In Vivo by Regulating Hyaluronic Acid Synthesis |
title_fullStr | Oral Intake of Collagen Peptide Attenuates Ultraviolet B Irradiation-Induced Skin Dehydration In Vivo by Regulating Hyaluronic Acid Synthesis |
title_full_unstemmed | Oral Intake of Collagen Peptide Attenuates Ultraviolet B Irradiation-Induced Skin Dehydration In Vivo by Regulating Hyaluronic Acid Synthesis |
title_short | Oral Intake of Collagen Peptide Attenuates Ultraviolet B Irradiation-Induced Skin Dehydration In Vivo by Regulating Hyaluronic Acid Synthesis |
title_sort | oral intake of collagen peptide attenuates ultraviolet b irradiation-induced skin dehydration in vivo by regulating hyaluronic acid synthesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274925/ https://www.ncbi.nlm.nih.gov/pubmed/30423867 http://dx.doi.org/10.3390/ijms19113551 |
work_keys_str_mv | AT kangmincheol oralintakeofcollagenpeptideattenuatesultravioletbirradiationinducedskindehydrationinvivobyregulatinghyaluronicacidsynthesis AT yumnamsilvia oralintakeofcollagenpeptideattenuatesultravioletbirradiationinducedskindehydrationinvivobyregulatinghyaluronicacidsynthesis AT kimsunyeou oralintakeofcollagenpeptideattenuatesultravioletbirradiationinducedskindehydrationinvivobyregulatinghyaluronicacidsynthesis |