Cargando…
Learning to Predict Ischemic Stroke Growth on Acute CT Perfusion Data by Interpolating Low-Dimensional Shape Representations
Cerebrovascular diseases, in particular ischemic stroke, are one of the leading global causes of death in developed countries. Perfusion CT and/or MRI are ideal imaging modalities for characterizing affected ischemic tissue in the hyper-acute phase. If infarct growth over time could be predicted acc...
Autores principales: | Lucas, Christian, Kemmling, André, Bouteldja, Nassim, Aulmann, Linda F., Madany Mamlouk, Amir, Heinrich, Mattias P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275324/ https://www.ncbi.nlm.nih.gov/pubmed/30534108 http://dx.doi.org/10.3389/fneur.2018.00989 |
Ejemplares similares
-
Sparse coding representation of emotional brain states in fMRI data
por: Mamlouk, Amir Madany, et al.
Publicado: (2010) -
Dynamic CT but Not Optimized Multiphase CT Angiography Accurately Identifies CT Perfusion Target Mismatch Ischemic Stroke Patients
por: Tian, Huiqiao, et al.
Publicado: (2019) -
Outcomes and CT Perfusion Thresholds of Mechanical Thrombectomy for Patients With Large Ischemic Core Lesions
por: Yang, Hongchao, et al.
Publicado: (2022) -
Evaluation of Revascularization in Different Suzuki Stages of Ischemic Moyamoya Disease by Whole-Brain CT Perfusion
por: Han, Qingdong, et al.
Publicado: (2021) -
Assessing the Relative Value of CT Perfusion Compared to Non-contrast CT and CT Angiography in Prognosticating Reperfusion-Eligible Acute Ischemic Stroke Patients
por: Bivard, Andrew, et al.
Publicado: (2021)