Cargando…
The effects of disodium pamidronate on human polymorphonuclear leukocytes and platelets: An in vitro study
Recent reports have indicated that, as well as having antiresorptive effects, bisphosphonates could have an application as anti-inflammatory drugs. Our aim was to investigate whether this anti-inflammatory action could be mediated by the nitric oxide (NO) released by the leukocytes migrating to the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SP Versita
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275572/ https://www.ncbi.nlm.nih.gov/pubmed/19238333 http://dx.doi.org/10.2478/s11658-009-0012-6 |
Sumario: | Recent reports have indicated that, as well as having antiresorptive effects, bisphosphonates could have an application as anti-inflammatory drugs. Our aim was to investigate whether this anti-inflammatory action could be mediated by the nitric oxide (NO) released by the leukocytes migrating to the site of inflammation. In particular, we investigated in vitro the intracellular calcium concentration ([Ca(2+)](i)), the level of NO released by PMN and platelets, and the PMN myeloperoxidase activity after incubation with disodium pamidronate, since there was a postulated modulatory effect of this aminosubstituted bisphosphonate on leukocytes both in vitro and in vivo. Our data shows that the pamidronate treatment provoked a significant increase in the [Ca(2+)](i) parallel to the enhancement in NO release, suggesting a possible activation of constitutive nitric oxide synthase, while the myeloperoxidase activity was significantly reduced. In conclusion, we hypothesized that treatment with pamidronate could stimulate NO-production by cells present near the bone compartment, thus constituting a protective mechanism against bone resorption occurring during inflammation. In addition, PMN- and platelet-derived NO could act as a negative feed-back signal to restrict the inflammatory processes. |
---|