Cargando…

The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism

Podocin (NPHS2) is a component of the glomerular slit membrane with major regulatory functions in the renal permeability of proteins. A loss of podocin and a decrease in its resynthesis can influence the outcome of renal diseases with nephrotic syndrome, such as minimal change glomerulonephritis, fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Harendza, Sigrid, Stahl, Rolf A.K., Schneider, André
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SP Versita 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275688/
https://www.ncbi.nlm.nih.gov/pubmed/19562271
http://dx.doi.org/10.2478/s11658-009-0026-0
_version_ 1783377855662522368
author Harendza, Sigrid
Stahl, Rolf A.K.
Schneider, André
author_facet Harendza, Sigrid
Stahl, Rolf A.K.
Schneider, André
author_sort Harendza, Sigrid
collection PubMed
description Podocin (NPHS2) is a component of the glomerular slit membrane with major regulatory functions in the renal permeability of proteins. A loss of podocin and a decrease in its resynthesis can influence the outcome of renal diseases with nephrotic syndrome, such as minimal change glomerulonephritis, focal segmental glomerulosclerosis (FSGS) and membranous nephropathy. The transcriptional regulation of podocin may play a major role in these processes. We defined the transcriptional regulation of the human podocin gene and the influence of single nucleotide polymorphisms (SNPs) within its promoter region in the podocytes using reporter gene constructs and gel shift analysis. In addition, we took genomic DNA from healthy Caucasian blood donors and from biopsies of kidneys with defined renal diseases and screened it for podocin promoter SNPs. Our data shows that the transcription of podocin is mainly regulated by the transcription factor Lmx1b, which binds to a FLAT-F element and displays enhancer function. With the SNP variant −116T, there was a significant reduction in luciferase activity, and nuclear protein binding was observed, while the SNP −670C/T did not display functionality. The allelic distribution of −116C/T in patients with kidney diseases leading to nephrotic syndrome was not significantly different from that in the control group. Our data indicates that among other factors, podocin is specifically regulated by the transcription factor Lmx1b and by the functional polymorphism -116C/T. However, there is no association between −116C/T and susceptibility to minimal change glomerulonephritis, focal segmental glomerulosclerosis or membranous nephropathy.
format Online
Article
Text
id pubmed-6275688
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher SP Versita
record_format MEDLINE/PubMed
spelling pubmed-62756882018-12-10 The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism Harendza, Sigrid Stahl, Rolf A.K. Schneider, André Cell Mol Biol Lett Research Article Podocin (NPHS2) is a component of the glomerular slit membrane with major regulatory functions in the renal permeability of proteins. A loss of podocin and a decrease in its resynthesis can influence the outcome of renal diseases with nephrotic syndrome, such as minimal change glomerulonephritis, focal segmental glomerulosclerosis (FSGS) and membranous nephropathy. The transcriptional regulation of podocin may play a major role in these processes. We defined the transcriptional regulation of the human podocin gene and the influence of single nucleotide polymorphisms (SNPs) within its promoter region in the podocytes using reporter gene constructs and gel shift analysis. In addition, we took genomic DNA from healthy Caucasian blood donors and from biopsies of kidneys with defined renal diseases and screened it for podocin promoter SNPs. Our data shows that the transcription of podocin is mainly regulated by the transcription factor Lmx1b, which binds to a FLAT-F element and displays enhancer function. With the SNP variant −116T, there was a significant reduction in luciferase activity, and nuclear protein binding was observed, while the SNP −670C/T did not display functionality. The allelic distribution of −116C/T in patients with kidney diseases leading to nephrotic syndrome was not significantly different from that in the control group. Our data indicates that among other factors, podocin is specifically regulated by the transcription factor Lmx1b and by the functional polymorphism -116C/T. However, there is no association between −116C/T and susceptibility to minimal change glomerulonephritis, focal segmental glomerulosclerosis or membranous nephropathy. SP Versita 2009-06-27 /pmc/articles/PMC6275688/ /pubmed/19562271 http://dx.doi.org/10.2478/s11658-009-0026-0 Text en © © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009
spellingShingle Research Article
Harendza, Sigrid
Stahl, Rolf A.K.
Schneider, André
The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism
title The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism
title_full The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism
title_fullStr The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism
title_full_unstemmed The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism
title_short The transcriptional regulation of Podocin (NPHS2) by Lmx1b and a promoter single nucleotide polymorphism
title_sort transcriptional regulation of podocin (nphs2) by lmx1b and a promoter single nucleotide polymorphism
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275688/
https://www.ncbi.nlm.nih.gov/pubmed/19562271
http://dx.doi.org/10.2478/s11658-009-0026-0
work_keys_str_mv AT harendzasigrid thetranscriptionalregulationofpodocinnphs2bylmx1bandapromotersinglenucleotidepolymorphism
AT stahlrolfak thetranscriptionalregulationofpodocinnphs2bylmx1bandapromotersinglenucleotidepolymorphism
AT schneiderandre thetranscriptionalregulationofpodocinnphs2bylmx1bandapromotersinglenucleotidepolymorphism
AT harendzasigrid transcriptionalregulationofpodocinnphs2bylmx1bandapromotersinglenucleotidepolymorphism
AT stahlrolfak transcriptionalregulationofpodocinnphs2bylmx1bandapromotersinglenucleotidepolymorphism
AT schneiderandre transcriptionalregulationofpodocinnphs2bylmx1bandapromotersinglenucleotidepolymorphism