Cargando…

Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy

Radiotherapy and chemotherapeutic agents that damage DNA are the current major non-surgical means of treating cancer. However, many patients develop resistances to chemotherapy drugs in their later lives. The PI3K and Ras signaling pathways are deregulated in most cancers, so molecularly targeting P...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Ziwen, Huang, Yujung, Zhang, Jiqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Versita 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275747/
https://www.ncbi.nlm.nih.gov/pubmed/24728800
http://dx.doi.org/10.2478/s11658-014-0191-7
_version_ 1783377868963708928
author Wang, Ziwen
Huang, Yujung
Zhang, Jiqiang
author_facet Wang, Ziwen
Huang, Yujung
Zhang, Jiqiang
author_sort Wang, Ziwen
collection PubMed
description Radiotherapy and chemotherapeutic agents that damage DNA are the current major non-surgical means of treating cancer. However, many patients develop resistances to chemotherapy drugs in their later lives. The PI3K and Ras signaling pathways are deregulated in most cancers, so molecularly targeting PI3K-Akt or Ras-MAPK signaling sensitizes many cancer types to radiotherapy and chemotherapy, but the underlying molecular mechanisms have yet to be determined. During the multi-step processes of tumorigenesis, cancer cells gain the capability to disrupt the cell cycle checkpoint and increase the activity of CDK4/6 by disrupting the PI3K, Ras, p53, and Rb signaling circuits. Recent advances have demonstrated that PI3K-Akt-mTOR signaling controls FANCD2 and ribonucleotide reductase (RNR). FANCD2 plays an important role in the resistance of cells to DNA damage agents and the activation of DNA damage checkpoints, while RNR is critical for the completion of DNA replication and repair in response to DNA damage and replication stress. Regulation of FANCD2 and RNR suggests that cancer cells depend on PI3K-Akt-mTOR signaling for survival in response to DNA damage, indicating that the PI3K-AktmTOR pathway promotes resistance to chemotherapy and radiotherapy by enhancing DNA damage repair.
format Online
Article
Text
id pubmed-6275747
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Versita
record_format MEDLINE/PubMed
spelling pubmed-62757472018-12-10 Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy Wang, Ziwen Huang, Yujung Zhang, Jiqiang Cell Mol Biol Lett Mini Review Radiotherapy and chemotherapeutic agents that damage DNA are the current major non-surgical means of treating cancer. However, many patients develop resistances to chemotherapy drugs in their later lives. The PI3K and Ras signaling pathways are deregulated in most cancers, so molecularly targeting PI3K-Akt or Ras-MAPK signaling sensitizes many cancer types to radiotherapy and chemotherapy, but the underlying molecular mechanisms have yet to be determined. During the multi-step processes of tumorigenesis, cancer cells gain the capability to disrupt the cell cycle checkpoint and increase the activity of CDK4/6 by disrupting the PI3K, Ras, p53, and Rb signaling circuits. Recent advances have demonstrated that PI3K-Akt-mTOR signaling controls FANCD2 and ribonucleotide reductase (RNR). FANCD2 plays an important role in the resistance of cells to DNA damage agents and the activation of DNA damage checkpoints, while RNR is critical for the completion of DNA replication and repair in response to DNA damage and replication stress. Regulation of FANCD2 and RNR suggests that cancer cells depend on PI3K-Akt-mTOR signaling for survival in response to DNA damage, indicating that the PI3K-AktmTOR pathway promotes resistance to chemotherapy and radiotherapy by enhancing DNA damage repair. Versita 2014-04-11 /pmc/articles/PMC6275747/ /pubmed/24728800 http://dx.doi.org/10.2478/s11658-014-0191-7 Text en © Versita Warsaw and Springer-Verlag Wien 2013
spellingShingle Mini Review
Wang, Ziwen
Huang, Yujung
Zhang, Jiqiang
Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy
title Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy
title_full Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy
title_fullStr Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy
title_full_unstemmed Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy
title_short Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy
title_sort molecularly targeting the pi3k-akt-mtor pathway can sensitize cancer cells to radiotherapy and chemotherapy
topic Mini Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275747/
https://www.ncbi.nlm.nih.gov/pubmed/24728800
http://dx.doi.org/10.2478/s11658-014-0191-7
work_keys_str_mv AT wangziwen molecularlytargetingthepi3kaktmtorpathwaycansensitizecancercellstoradiotherapyandchemotherapy
AT huangyujung molecularlytargetingthepi3kaktmtorpathwaycansensitizecancercellstoradiotherapyandchemotherapy
AT zhangjiqiang molecularlytargetingthepi3kaktmtorpathwaycansensitizecancercellstoradiotherapyandchemotherapy