Cargando…

An autoradiographic study of cellular proliferaton, DNA synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: The protective role of melatonin

The protective effect of melatonin against phenobarbital-induced oxidative stress in the rat liver was measured based on lipid peroxidation levels (malondialedyde and 4-hydroxyalkenals). Cellular proliferation, DNA synthesis and cell cycle duration were quantitated by the incorporation of (3)H-thymi...

Descripción completa

Detalles Bibliográficos
Autor principal: El-Sokkary, Gamal H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Versita 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275773/
https://www.ncbi.nlm.nih.gov/pubmed/17297560
http://dx.doi.org/10.2478/s11658-007-0005-2
_version_ 1783377874888163328
author El-Sokkary, Gamal H.
author_facet El-Sokkary, Gamal H.
author_sort El-Sokkary, Gamal H.
collection PubMed
description The protective effect of melatonin against phenobarbital-induced oxidative stress in the rat liver was measured based on lipid peroxidation levels (malondialedyde and 4-hydroxyalkenals). Cellular proliferation, DNA synthesis and cell cycle duration were quantitated by the incorporation of (3)H-thymidine, detected by autoradiography, into newly synthesized DNA. Two experiments were carried out in this study, each on four equal-sized groups of male rats (control, melatonin [10 mg/kg], phenobabital [20 mg/kg] and phenobarbital plus melatonin). Experiment I was designed to study the proliferative activity and rate of DNA synthesis, and measure the levels of lipid peroxidation, while experiment II was for cell cycle time determination. Relative to the controls, the phenobarbital-treated rats showed a significant increase (P < 0.01) in the lipid peroxidation levels (30.7%), labelling index (69.4%) and rate of DNA synthesis (37.8%), and a decrease in the cell cycle time. Administering melatonin to the phenobarbital-treated rats significantly reduced (P < 0.01) the lipid peroxidation levels (23.5%), labelling index (38.2%) and rate of DNA synthesis (29.0%), and increased the cell cycle time. These results seem to indicate that the stimulatory effect of phenobarbital on the oxidized lipids, proliferative activity, kinetics of DNA synthesis and cell cycle time alteration in the liver may be one of the mechanisms by which the non-genotoxic mitogen induces its carcinogenic action. Furthermore, melatonin displayed powerful protection against the toxic effect of phenobarbital.
format Online
Article
Text
id pubmed-6275773
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Versita
record_format MEDLINE/PubMed
spelling pubmed-62757732018-12-10 An autoradiographic study of cellular proliferaton, DNA synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: The protective role of melatonin El-Sokkary, Gamal H. Cell Mol Biol Lett Article The protective effect of melatonin against phenobarbital-induced oxidative stress in the rat liver was measured based on lipid peroxidation levels (malondialedyde and 4-hydroxyalkenals). Cellular proliferation, DNA synthesis and cell cycle duration were quantitated by the incorporation of (3)H-thymidine, detected by autoradiography, into newly synthesized DNA. Two experiments were carried out in this study, each on four equal-sized groups of male rats (control, melatonin [10 mg/kg], phenobabital [20 mg/kg] and phenobarbital plus melatonin). Experiment I was designed to study the proliferative activity and rate of DNA synthesis, and measure the levels of lipid peroxidation, while experiment II was for cell cycle time determination. Relative to the controls, the phenobarbital-treated rats showed a significant increase (P < 0.01) in the lipid peroxidation levels (30.7%), labelling index (69.4%) and rate of DNA synthesis (37.8%), and a decrease in the cell cycle time. Administering melatonin to the phenobarbital-treated rats significantly reduced (P < 0.01) the lipid peroxidation levels (23.5%), labelling index (38.2%) and rate of DNA synthesis (29.0%), and increased the cell cycle time. These results seem to indicate that the stimulatory effect of phenobarbital on the oxidized lipids, proliferative activity, kinetics of DNA synthesis and cell cycle time alteration in the liver may be one of the mechanisms by which the non-genotoxic mitogen induces its carcinogenic action. Furthermore, melatonin displayed powerful protection against the toxic effect of phenobarbital. Versita 2007-02-13 /pmc/articles/PMC6275773/ /pubmed/17297560 http://dx.doi.org/10.2478/s11658-007-0005-2 Text en © University of Wrocław 2007
spellingShingle Article
El-Sokkary, Gamal H.
An autoradiographic study of cellular proliferaton, DNA synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: The protective role of melatonin
title An autoradiographic study of cellular proliferaton, DNA synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: The protective role of melatonin
title_full An autoradiographic study of cellular proliferaton, DNA synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: The protective role of melatonin
title_fullStr An autoradiographic study of cellular proliferaton, DNA synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: The protective role of melatonin
title_full_unstemmed An autoradiographic study of cellular proliferaton, DNA synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: The protective role of melatonin
title_short An autoradiographic study of cellular proliferaton, DNA synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: The protective role of melatonin
title_sort autoradiographic study of cellular proliferaton, dna synthesis and cell cycle variability in the rat liver caused by phenobarbital-induced oxidative stress: the protective role of melatonin
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275773/
https://www.ncbi.nlm.nih.gov/pubmed/17297560
http://dx.doi.org/10.2478/s11658-007-0005-2
work_keys_str_mv AT elsokkarygamalh anautoradiographicstudyofcellularproliferatondnasynthesisandcellcyclevariabilityintheratlivercausedbyphenobarbitalinducedoxidativestresstheprotectiveroleofmelatonin
AT elsokkarygamalh autoradiographicstudyofcellularproliferatondnasynthesisandcellcyclevariabilityintheratlivercausedbyphenobarbitalinducedoxidativestresstheprotectiveroleofmelatonin