Cargando…
Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images
We develop neural-network-based methods for classifying plaque types in clinical intravascular optical coherence tomography (IVOCT) images of coronary arteries. A single IVOCT pullback can consist of [Formula: see text] microscopic-resolution images, creating both a challenge for physician interpret...
Autores principales: | Kolluru, Chaitanya, Prabhu, David, Gharaibeh, Yazan, Bezerra, Hiram, Guagliumi, Giulio, Wilson, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275844/ https://www.ncbi.nlm.nih.gov/pubmed/30525060 http://dx.doi.org/10.1117/1.JMI.5.4.044504 |
Ejemplares similares
-
Automated A-line coronary plaque classification of intravascular optical coherence tomography images using handcrafted features and large datasets
por: Prabhu, David, et al.
Publicado: (2019) -
Automated analysis of fibrous cap in intravascular optical coherence tomography images of coronary arteries
por: Lee, Juhwan, et al.
Publicado: (2022) -
OCTOPUS – Optical coherence tomography plaque and stent analysis software
por: Lee, Juhwan, et al.
Publicado: (2023) -
Fully automated plaque characterization in intravascular OCT images using hybrid convolutional and lumen morphology features
por: Lee, Juhwan, et al.
Publicado: (2020) -
Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring
por: Gharaibeh, Yazan, et al.
Publicado: (2019)