Cargando…
PotentialNet for Molecular Property Prediction
[Image: see text] The arc of drug discovery entails a multiparameter optimization problem spanning vast length scales. The key parameters range from solubility (angstroms) to protein–ligand binding (nanometers) to in vivo toxicity (meters). Through feature learning—instead of feature engineering—dee...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276035/ https://www.ncbi.nlm.nih.gov/pubmed/30555904 http://dx.doi.org/10.1021/acscentsci.8b00507 |
_version_ | 1783377934574157824 |
---|---|
author | Feinberg, Evan N. Sur, Debnil Wu, Zhenqin Husic, Brooke E. Mai, Huanghao Li, Yang Sun, Saisai Yang, Jianyi Ramsundar, Bharath Pande, Vijay S. |
author_facet | Feinberg, Evan N. Sur, Debnil Wu, Zhenqin Husic, Brooke E. Mai, Huanghao Li, Yang Sun, Saisai Yang, Jianyi Ramsundar, Bharath Pande, Vijay S. |
author_sort | Feinberg, Evan N. |
collection | PubMed |
description | [Image: see text] The arc of drug discovery entails a multiparameter optimization problem spanning vast length scales. The key parameters range from solubility (angstroms) to protein–ligand binding (nanometers) to in vivo toxicity (meters). Through feature learning—instead of feature engineering—deep neural networks promise to outperform both traditional physics-based and knowledge-based machine learning models for predicting molecular properties pertinent to drug discovery. To this end, we present the PotentialNet family of graph convolutions. These models are specifically designed for and achieve state-of-the-art performance for protein–ligand binding affinity. We further validate these deep neural networks by setting new standards of performance in several ligand-based tasks. In parallel, we introduce a new metric, the Regression Enrichment Factor EF(χ)((R)), to measure the early enrichment of computational models for chemical data. Finally, we introduce a cross-validation strategy based on structural homology clustering that can more accurately measure model generalizability, which crucially distinguishes the aims of machine learning for drug discovery from standard machine learning tasks. |
format | Online Article Text |
id | pubmed-6276035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-62760352018-12-15 PotentialNet for Molecular Property Prediction Feinberg, Evan N. Sur, Debnil Wu, Zhenqin Husic, Brooke E. Mai, Huanghao Li, Yang Sun, Saisai Yang, Jianyi Ramsundar, Bharath Pande, Vijay S. ACS Cent Sci [Image: see text] The arc of drug discovery entails a multiparameter optimization problem spanning vast length scales. The key parameters range from solubility (angstroms) to protein–ligand binding (nanometers) to in vivo toxicity (meters). Through feature learning—instead of feature engineering—deep neural networks promise to outperform both traditional physics-based and knowledge-based machine learning models for predicting molecular properties pertinent to drug discovery. To this end, we present the PotentialNet family of graph convolutions. These models are specifically designed for and achieve state-of-the-art performance for protein–ligand binding affinity. We further validate these deep neural networks by setting new standards of performance in several ligand-based tasks. In parallel, we introduce a new metric, the Regression Enrichment Factor EF(χ)((R)), to measure the early enrichment of computational models for chemical data. Finally, we introduce a cross-validation strategy based on structural homology clustering that can more accurately measure model generalizability, which crucially distinguishes the aims of machine learning for drug discovery from standard machine learning tasks. American Chemical Society 2018-11-02 2018-11-28 /pmc/articles/PMC6276035/ /pubmed/30555904 http://dx.doi.org/10.1021/acscentsci.8b00507 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Feinberg, Evan N. Sur, Debnil Wu, Zhenqin Husic, Brooke E. Mai, Huanghao Li, Yang Sun, Saisai Yang, Jianyi Ramsundar, Bharath Pande, Vijay S. PotentialNet for Molecular Property Prediction |
title | PotentialNet for Molecular Property Prediction |
title_full | PotentialNet for Molecular Property Prediction |
title_fullStr | PotentialNet for Molecular Property Prediction |
title_full_unstemmed | PotentialNet for Molecular Property Prediction |
title_short | PotentialNet for Molecular Property Prediction |
title_sort | potentialnet for molecular property prediction |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276035/ https://www.ncbi.nlm.nih.gov/pubmed/30555904 http://dx.doi.org/10.1021/acscentsci.8b00507 |
work_keys_str_mv | AT feinbergevann potentialnetformolecularpropertyprediction AT surdebnil potentialnetformolecularpropertyprediction AT wuzhenqin potentialnetformolecularpropertyprediction AT husicbrookee potentialnetformolecularpropertyprediction AT maihuanghao potentialnetformolecularpropertyprediction AT liyang potentialnetformolecularpropertyprediction AT sunsaisai potentialnetformolecularpropertyprediction AT yangjianyi potentialnetformolecularpropertyprediction AT ramsundarbharath potentialnetformolecularpropertyprediction AT pandevijays potentialnetformolecularpropertyprediction |