Cargando…

PotentialNet for Molecular Property Prediction

[Image: see text] The arc of drug discovery entails a multiparameter optimization problem spanning vast length scales. The key parameters range from solubility (angstroms) to protein–ligand binding (nanometers) to in vivo toxicity (meters). Through feature learning—instead of feature engineering—dee...

Descripción completa

Detalles Bibliográficos
Autores principales: Feinberg, Evan N., Sur, Debnil, Wu, Zhenqin, Husic, Brooke E., Mai, Huanghao, Li, Yang, Sun, Saisai, Yang, Jianyi, Ramsundar, Bharath, Pande, Vijay S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276035/
https://www.ncbi.nlm.nih.gov/pubmed/30555904
http://dx.doi.org/10.1021/acscentsci.8b00507
_version_ 1783377934574157824
author Feinberg, Evan N.
Sur, Debnil
Wu, Zhenqin
Husic, Brooke E.
Mai, Huanghao
Li, Yang
Sun, Saisai
Yang, Jianyi
Ramsundar, Bharath
Pande, Vijay S.
author_facet Feinberg, Evan N.
Sur, Debnil
Wu, Zhenqin
Husic, Brooke E.
Mai, Huanghao
Li, Yang
Sun, Saisai
Yang, Jianyi
Ramsundar, Bharath
Pande, Vijay S.
author_sort Feinberg, Evan N.
collection PubMed
description [Image: see text] The arc of drug discovery entails a multiparameter optimization problem spanning vast length scales. The key parameters range from solubility (angstroms) to protein–ligand binding (nanometers) to in vivo toxicity (meters). Through feature learning—instead of feature engineering—deep neural networks promise to outperform both traditional physics-based and knowledge-based machine learning models for predicting molecular properties pertinent to drug discovery. To this end, we present the PotentialNet family of graph convolutions. These models are specifically designed for and achieve state-of-the-art performance for protein–ligand binding affinity. We further validate these deep neural networks by setting new standards of performance in several ligand-based tasks. In parallel, we introduce a new metric, the Regression Enrichment Factor EF(χ)((R)), to measure the early enrichment of computational models for chemical data. Finally, we introduce a cross-validation strategy based on structural homology clustering that can more accurately measure model generalizability, which crucially distinguishes the aims of machine learning for drug discovery from standard machine learning tasks.
format Online
Article
Text
id pubmed-6276035
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-62760352018-12-15 PotentialNet for Molecular Property Prediction Feinberg, Evan N. Sur, Debnil Wu, Zhenqin Husic, Brooke E. Mai, Huanghao Li, Yang Sun, Saisai Yang, Jianyi Ramsundar, Bharath Pande, Vijay S. ACS Cent Sci [Image: see text] The arc of drug discovery entails a multiparameter optimization problem spanning vast length scales. The key parameters range from solubility (angstroms) to protein–ligand binding (nanometers) to in vivo toxicity (meters). Through feature learning—instead of feature engineering—deep neural networks promise to outperform both traditional physics-based and knowledge-based machine learning models for predicting molecular properties pertinent to drug discovery. To this end, we present the PotentialNet family of graph convolutions. These models are specifically designed for and achieve state-of-the-art performance for protein–ligand binding affinity. We further validate these deep neural networks by setting new standards of performance in several ligand-based tasks. In parallel, we introduce a new metric, the Regression Enrichment Factor EF(χ)((R)), to measure the early enrichment of computational models for chemical data. Finally, we introduce a cross-validation strategy based on structural homology clustering that can more accurately measure model generalizability, which crucially distinguishes the aims of machine learning for drug discovery from standard machine learning tasks. American Chemical Society 2018-11-02 2018-11-28 /pmc/articles/PMC6276035/ /pubmed/30555904 http://dx.doi.org/10.1021/acscentsci.8b00507 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Feinberg, Evan N.
Sur, Debnil
Wu, Zhenqin
Husic, Brooke E.
Mai, Huanghao
Li, Yang
Sun, Saisai
Yang, Jianyi
Ramsundar, Bharath
Pande, Vijay S.
PotentialNet for Molecular Property Prediction
title PotentialNet for Molecular Property Prediction
title_full PotentialNet for Molecular Property Prediction
title_fullStr PotentialNet for Molecular Property Prediction
title_full_unstemmed PotentialNet for Molecular Property Prediction
title_short PotentialNet for Molecular Property Prediction
title_sort potentialnet for molecular property prediction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276035/
https://www.ncbi.nlm.nih.gov/pubmed/30555904
http://dx.doi.org/10.1021/acscentsci.8b00507
work_keys_str_mv AT feinbergevann potentialnetformolecularpropertyprediction
AT surdebnil potentialnetformolecularpropertyprediction
AT wuzhenqin potentialnetformolecularpropertyprediction
AT husicbrookee potentialnetformolecularpropertyprediction
AT maihuanghao potentialnetformolecularpropertyprediction
AT liyang potentialnetformolecularpropertyprediction
AT sunsaisai potentialnetformolecularpropertyprediction
AT yangjianyi potentialnetformolecularpropertyprediction
AT ramsundarbharath potentialnetformolecularpropertyprediction
AT pandevijays potentialnetformolecularpropertyprediction