Cargando…
PotentialNet for Molecular Property Prediction
[Image: see text] The arc of drug discovery entails a multiparameter optimization problem spanning vast length scales. The key parameters range from solubility (angstroms) to protein–ligand binding (nanometers) to in vivo toxicity (meters). Through feature learning—instead of feature engineering—dee...
Autores principales: | Feinberg, Evan N., Sur, Debnil, Wu, Zhenqin, Husic, Brooke E., Mai, Huanghao, Li, Yang, Sun, Saisai, Yang, Jianyi, Ramsundar, Bharath, Pande, Vijay S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276035/ https://www.ncbi.nlm.nih.gov/pubmed/30555904 http://dx.doi.org/10.1021/acscentsci.8b00507 |
Ejemplares similares
-
MoleculeNet: a benchmark for molecular machine learning
por: Wu, Zhenqin, et al.
Publicado: (2017) -
Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more
por: Ramsundar, Bharath, et al.
Publicado: (2019) -
Solving the RNA design problem with reinforcement learning
por: Eastman, Peter, et al.
Publicado: (2018) -
Low Data Drug Discovery with One-Shot Learning
por: Altae-Tran, Han, et al.
Publicado: (2017) -
Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence
Models
por: Liu, Bowen, et al.
Publicado: (2017)