Cargando…

Nonequilibrium Spatiotemporal Sensing within Acoustically Patterned Two-Dimensional Protocell Arrays

[Image: see text] Acoustically trapped periodic arrays of horseradish peroxidase (HRP)-loaded poly(diallydimethylammonium chloride) / adenosine 5′-triphosphate coacervate microdroplet-based protocells exhibit a spatiotemporal biochemical response when exposed to a codiffusing mixture of substrate mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Liangfei, Li, Mei, Liu, Juntai, Patil, Avinash J., Drinkwater, Bruce W., Mann, Stephen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276052/
https://www.ncbi.nlm.nih.gov/pubmed/30555908
http://dx.doi.org/10.1021/acscentsci.8b00555
Descripción
Sumario:[Image: see text] Acoustically trapped periodic arrays of horseradish peroxidase (HRP)-loaded poly(diallydimethylammonium chloride) / adenosine 5′-triphosphate coacervate microdroplet-based protocells exhibit a spatiotemporal biochemical response when exposed to a codiffusing mixture of substrate molecules (o-phenylenediamine (o-PD) and hydrogen peroxide (H(2)O(2))) under nonequilibrium conditions. Unidirectional propagation of the chemical concentration gradients gives rise to time- and position-dependent fluorescence signal outputs from individual coacervate microdroplets, indicating that the organized protocell assembly can dynamically sense encoded information in the advancing reaction-diffusion front. The methodology is extended to arrays comprising spatially separated binary populations of HRP- or glucose oxidase-containing coacervate microdroplets to internally generate a H(2)O(2) signal that chemically connects the two protocell communities via a concerted biochemical cascade reaction. Our results provide a step toward establishing a systematic approach to study dynamic interactions between organized protocell consortia and propagating reaction-diffusion gradients, and offer a new methodology for exploring the complexity of protocellular communication networks operating under nonequilibrium conditions.