Cargando…
Nonequilibrium Spatiotemporal Sensing within Acoustically Patterned Two-Dimensional Protocell Arrays
[Image: see text] Acoustically trapped periodic arrays of horseradish peroxidase (HRP)-loaded poly(diallydimethylammonium chloride) / adenosine 5′-triphosphate coacervate microdroplet-based protocells exhibit a spatiotemporal biochemical response when exposed to a codiffusing mixture of substrate mo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276052/ https://www.ncbi.nlm.nih.gov/pubmed/30555908 http://dx.doi.org/10.1021/acscentsci.8b00555 |
Sumario: | [Image: see text] Acoustically trapped periodic arrays of horseradish peroxidase (HRP)-loaded poly(diallydimethylammonium chloride) / adenosine 5′-triphosphate coacervate microdroplet-based protocells exhibit a spatiotemporal biochemical response when exposed to a codiffusing mixture of substrate molecules (o-phenylenediamine (o-PD) and hydrogen peroxide (H(2)O(2))) under nonequilibrium conditions. Unidirectional propagation of the chemical concentration gradients gives rise to time- and position-dependent fluorescence signal outputs from individual coacervate microdroplets, indicating that the organized protocell assembly can dynamically sense encoded information in the advancing reaction-diffusion front. The methodology is extended to arrays comprising spatially separated binary populations of HRP- or glucose oxidase-containing coacervate microdroplets to internally generate a H(2)O(2) signal that chemically connects the two protocell communities via a concerted biochemical cascade reaction. Our results provide a step toward establishing a systematic approach to study dynamic interactions between organized protocell consortia and propagating reaction-diffusion gradients, and offer a new methodology for exploring the complexity of protocellular communication networks operating under nonequilibrium conditions. |
---|