Cargando…
Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton
BACKGROUND: Phytoplankton species identification and counting is a crucial step of water quality assessment. Especially drinking water reservoirs, bathing and ballast water need to be regularly monitored for harmful species. In times of multiple environmental threats like eutrophication, climate war...
Autores principales: | Dunker, Susanne, Boho, David, Wäldchen, Jana, Mäder, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276140/ https://www.ncbi.nlm.nih.gov/pubmed/30509239 http://dx.doi.org/10.1186/s12898-018-0209-5 |
Ejemplares similares
-
Image-based classification of plant genus and family for trained and untrained plant species
por: Seeland, Marco, et al.
Publicado: (2019) -
Image-Based Automated Recognition of 31 Poaceae Species: The Most Relevant Perspectives
por: Rzanny, Michael, et al.
Publicado: (2022) -
Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review
por: Wäldchen, Jana, et al.
Publicado: (2017) -
Flora Capture: a citizen science application for collecting structured plant observations
por: Boho, David, et al.
Publicado: (2020) -
Bridging the gap: how to adopt opportunistic plant observations for phenology monitoring
por: Katal, Negin, et al.
Publicado: (2023)