Cargando…

Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts

BACKGROUND: Few published breast cancer (BC) risk prediction models consider the heterogeneity of predictor variables between estrogen-receptor positive (ER+) and negative (ER-) tumors. Using data from two large cohorts, we examined whether modeling this heterogeneity could improve prediction. METHO...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Kuanrong, Anderson, Garnet, Viallon, Vivian, Arveux, Patrick, Kvaskoff, Marina, Fournier, Agnès, Krogh, Vittorio, Tumino, Rosario, Sánchez, Maria-Jose, Ardanaz, Eva, Chirlaque, María-Dolores, Agudo, Antonio, Muller, David C., Smith, Todd, Tzoulaki, Ioanna, Key, Timothy J., Bueno-de-Mesquita, Bas, Trichopoulou, Antonia, Bamia, Christina, Orfanos, Philippos, Kaaks, Rudolf, Hüsing, Anika, Fortner, Renée T., Zeleniuch-Jacquotte, Anne, Sund, Malin, Dahm, Christina C., Overvad, Kim, Aune, Dagfinn, Weiderpass, Elisabete, Romieu, Isabelle, Riboli, Elio, Gunter, Marc J., Dossus, Laure, Prentice, Ross, Ferrari, Pietro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276150/
https://www.ncbi.nlm.nih.gov/pubmed/30509329
http://dx.doi.org/10.1186/s13058-018-1073-0
_version_ 1783377954985738240
author Li, Kuanrong
Anderson, Garnet
Viallon, Vivian
Arveux, Patrick
Kvaskoff, Marina
Fournier, Agnès
Krogh, Vittorio
Tumino, Rosario
Sánchez, Maria-Jose
Ardanaz, Eva
Chirlaque, María-Dolores
Agudo, Antonio
Muller, David C.
Smith, Todd
Tzoulaki, Ioanna
Key, Timothy J.
Bueno-de-Mesquita, Bas
Trichopoulou, Antonia
Bamia, Christina
Orfanos, Philippos
Kaaks, Rudolf
Hüsing, Anika
Fortner, Renée T.
Zeleniuch-Jacquotte, Anne
Sund, Malin
Dahm, Christina C.
Overvad, Kim
Aune, Dagfinn
Weiderpass, Elisabete
Romieu, Isabelle
Riboli, Elio
Gunter, Marc J.
Dossus, Laure
Prentice, Ross
Ferrari, Pietro
author_facet Li, Kuanrong
Anderson, Garnet
Viallon, Vivian
Arveux, Patrick
Kvaskoff, Marina
Fournier, Agnès
Krogh, Vittorio
Tumino, Rosario
Sánchez, Maria-Jose
Ardanaz, Eva
Chirlaque, María-Dolores
Agudo, Antonio
Muller, David C.
Smith, Todd
Tzoulaki, Ioanna
Key, Timothy J.
Bueno-de-Mesquita, Bas
Trichopoulou, Antonia
Bamia, Christina
Orfanos, Philippos
Kaaks, Rudolf
Hüsing, Anika
Fortner, Renée T.
Zeleniuch-Jacquotte, Anne
Sund, Malin
Dahm, Christina C.
Overvad, Kim
Aune, Dagfinn
Weiderpass, Elisabete
Romieu, Isabelle
Riboli, Elio
Gunter, Marc J.
Dossus, Laure
Prentice, Ross
Ferrari, Pietro
author_sort Li, Kuanrong
collection PubMed
description BACKGROUND: Few published breast cancer (BC) risk prediction models consider the heterogeneity of predictor variables between estrogen-receptor positive (ER+) and negative (ER-) tumors. Using data from two large cohorts, we examined whether modeling this heterogeneity could improve prediction. METHODS: We built two models, for ER+ (Model(ER+)) and ER- tumors (Model(ER-)), respectively, in 281,330 women (51% postmenopausal at recruitment) from the European Prospective Investigation into Cancer and Nutrition cohort. Discrimination (C-statistic) and calibration (the agreement between predicted and observed tumor risks) were assessed both internally and externally in 82,319 postmenopausal women from the Women’s Health Initiative study. We performed decision curve analysis to compare Model(ER+) and the Gail model (Model(Gail)) regarding their applicability in risk assessment for chemoprevention. RESULTS: Parity, number of full-term pregnancies, age at first full-term pregnancy and body height were only associated with ER+ tumors. Menopausal status, age at menarche and at menopause, hormone replacement therapy, postmenopausal body mass index, and alcohol intake were homogeneously associated with ER+ and ER- tumors. Internal validation yielded a C-statistic of 0.64 for Model(ER+) and 0.59 for Model(ER-). External validation reduced the C-statistic of Model(ER+) (0.59) and Model(Gail) (0.57). In external evaluation of calibration, Model(ER+) outperformed the Model(Gail): the former led to a 9% overestimation of the risk of ER+ tumors, while the latter yielded a 22% underestimation of the overall BC risk. Compared with the treat-all strategy, Model(ER+) produced equal or higher net benefits irrespective of the benefit-to-harm ratio of chemoprevention, while Model(Gail) did not produce higher net benefits unless the benefit-to-harm ratio was below 50. The clinical applicability, i.e. the area defined by the net benefit curve and the treat-all and treat-none strategies, was 12.7 × 10(− 6) for Model(ER+) and 3.0 × 10(− 6) for Model(Gail). CONCLUSIONS: Modeling heterogeneous epidemiological risk factors might yield little improvement in BC risk prediction. Nevertheless, a model specifically predictive of ER+ tumor risk could be more applicable than an omnibus model in risk assessment for chemoprevention.
format Online
Article
Text
id pubmed-6276150
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-62761502018-12-06 Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts Li, Kuanrong Anderson, Garnet Viallon, Vivian Arveux, Patrick Kvaskoff, Marina Fournier, Agnès Krogh, Vittorio Tumino, Rosario Sánchez, Maria-Jose Ardanaz, Eva Chirlaque, María-Dolores Agudo, Antonio Muller, David C. Smith, Todd Tzoulaki, Ioanna Key, Timothy J. Bueno-de-Mesquita, Bas Trichopoulou, Antonia Bamia, Christina Orfanos, Philippos Kaaks, Rudolf Hüsing, Anika Fortner, Renée T. Zeleniuch-Jacquotte, Anne Sund, Malin Dahm, Christina C. Overvad, Kim Aune, Dagfinn Weiderpass, Elisabete Romieu, Isabelle Riboli, Elio Gunter, Marc J. Dossus, Laure Prentice, Ross Ferrari, Pietro Breast Cancer Res Research Article BACKGROUND: Few published breast cancer (BC) risk prediction models consider the heterogeneity of predictor variables between estrogen-receptor positive (ER+) and negative (ER-) tumors. Using data from two large cohorts, we examined whether modeling this heterogeneity could improve prediction. METHODS: We built two models, for ER+ (Model(ER+)) and ER- tumors (Model(ER-)), respectively, in 281,330 women (51% postmenopausal at recruitment) from the European Prospective Investigation into Cancer and Nutrition cohort. Discrimination (C-statistic) and calibration (the agreement between predicted and observed tumor risks) were assessed both internally and externally in 82,319 postmenopausal women from the Women’s Health Initiative study. We performed decision curve analysis to compare Model(ER+) and the Gail model (Model(Gail)) regarding their applicability in risk assessment for chemoprevention. RESULTS: Parity, number of full-term pregnancies, age at first full-term pregnancy and body height were only associated with ER+ tumors. Menopausal status, age at menarche and at menopause, hormone replacement therapy, postmenopausal body mass index, and alcohol intake were homogeneously associated with ER+ and ER- tumors. Internal validation yielded a C-statistic of 0.64 for Model(ER+) and 0.59 for Model(ER-). External validation reduced the C-statistic of Model(ER+) (0.59) and Model(Gail) (0.57). In external evaluation of calibration, Model(ER+) outperformed the Model(Gail): the former led to a 9% overestimation of the risk of ER+ tumors, while the latter yielded a 22% underestimation of the overall BC risk. Compared with the treat-all strategy, Model(ER+) produced equal or higher net benefits irrespective of the benefit-to-harm ratio of chemoprevention, while Model(Gail) did not produce higher net benefits unless the benefit-to-harm ratio was below 50. The clinical applicability, i.e. the area defined by the net benefit curve and the treat-all and treat-none strategies, was 12.7 × 10(− 6) for Model(ER+) and 3.0 × 10(− 6) for Model(Gail). CONCLUSIONS: Modeling heterogeneous epidemiological risk factors might yield little improvement in BC risk prediction. Nevertheless, a model specifically predictive of ER+ tumor risk could be more applicable than an omnibus model in risk assessment for chemoprevention. BioMed Central 2018-12-03 2018 /pmc/articles/PMC6276150/ /pubmed/30509329 http://dx.doi.org/10.1186/s13058-018-1073-0 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Li, Kuanrong
Anderson, Garnet
Viallon, Vivian
Arveux, Patrick
Kvaskoff, Marina
Fournier, Agnès
Krogh, Vittorio
Tumino, Rosario
Sánchez, Maria-Jose
Ardanaz, Eva
Chirlaque, María-Dolores
Agudo, Antonio
Muller, David C.
Smith, Todd
Tzoulaki, Ioanna
Key, Timothy J.
Bueno-de-Mesquita, Bas
Trichopoulou, Antonia
Bamia, Christina
Orfanos, Philippos
Kaaks, Rudolf
Hüsing, Anika
Fortner, Renée T.
Zeleniuch-Jacquotte, Anne
Sund, Malin
Dahm, Christina C.
Overvad, Kim
Aune, Dagfinn
Weiderpass, Elisabete
Romieu, Isabelle
Riboli, Elio
Gunter, Marc J.
Dossus, Laure
Prentice, Ross
Ferrari, Pietro
Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts
title Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts
title_full Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts
title_fullStr Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts
title_full_unstemmed Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts
title_short Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts
title_sort risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276150/
https://www.ncbi.nlm.nih.gov/pubmed/30509329
http://dx.doi.org/10.1186/s13058-018-1073-0
work_keys_str_mv AT likuanrong riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT andersongarnet riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT viallonvivian riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT arveuxpatrick riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT kvaskoffmarina riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT fournieragnes riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT kroghvittorio riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT tuminorosario riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT sanchezmariajose riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT ardanazeva riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT chirlaquemariadolores riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT agudoantonio riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT mullerdavidc riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT smithtodd riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT tzoulakiioanna riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT keytimothyj riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT buenodemesquitabas riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT trichopoulouantonia riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT bamiachristina riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT orfanosphilippos riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT kaaksrudolf riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT husinganika riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT fortnerreneet riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT zeleniuchjacquotteanne riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT sundmalin riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT dahmchristinac riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT overvadkim riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT aunedagfinn riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT weiderpasselisabete riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT romieuisabelle riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT ribolielio riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT guntermarcj riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT dossuslaure riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT prenticeross riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts
AT ferraripietro riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts