Cargando…
Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts
BACKGROUND: Few published breast cancer (BC) risk prediction models consider the heterogeneity of predictor variables between estrogen-receptor positive (ER+) and negative (ER-) tumors. Using data from two large cohorts, we examined whether modeling this heterogeneity could improve prediction. METHO...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276150/ https://www.ncbi.nlm.nih.gov/pubmed/30509329 http://dx.doi.org/10.1186/s13058-018-1073-0 |
_version_ | 1783377954985738240 |
---|---|
author | Li, Kuanrong Anderson, Garnet Viallon, Vivian Arveux, Patrick Kvaskoff, Marina Fournier, Agnès Krogh, Vittorio Tumino, Rosario Sánchez, Maria-Jose Ardanaz, Eva Chirlaque, María-Dolores Agudo, Antonio Muller, David C. Smith, Todd Tzoulaki, Ioanna Key, Timothy J. Bueno-de-Mesquita, Bas Trichopoulou, Antonia Bamia, Christina Orfanos, Philippos Kaaks, Rudolf Hüsing, Anika Fortner, Renée T. Zeleniuch-Jacquotte, Anne Sund, Malin Dahm, Christina C. Overvad, Kim Aune, Dagfinn Weiderpass, Elisabete Romieu, Isabelle Riboli, Elio Gunter, Marc J. Dossus, Laure Prentice, Ross Ferrari, Pietro |
author_facet | Li, Kuanrong Anderson, Garnet Viallon, Vivian Arveux, Patrick Kvaskoff, Marina Fournier, Agnès Krogh, Vittorio Tumino, Rosario Sánchez, Maria-Jose Ardanaz, Eva Chirlaque, María-Dolores Agudo, Antonio Muller, David C. Smith, Todd Tzoulaki, Ioanna Key, Timothy J. Bueno-de-Mesquita, Bas Trichopoulou, Antonia Bamia, Christina Orfanos, Philippos Kaaks, Rudolf Hüsing, Anika Fortner, Renée T. Zeleniuch-Jacquotte, Anne Sund, Malin Dahm, Christina C. Overvad, Kim Aune, Dagfinn Weiderpass, Elisabete Romieu, Isabelle Riboli, Elio Gunter, Marc J. Dossus, Laure Prentice, Ross Ferrari, Pietro |
author_sort | Li, Kuanrong |
collection | PubMed |
description | BACKGROUND: Few published breast cancer (BC) risk prediction models consider the heterogeneity of predictor variables between estrogen-receptor positive (ER+) and negative (ER-) tumors. Using data from two large cohorts, we examined whether modeling this heterogeneity could improve prediction. METHODS: We built two models, for ER+ (Model(ER+)) and ER- tumors (Model(ER-)), respectively, in 281,330 women (51% postmenopausal at recruitment) from the European Prospective Investigation into Cancer and Nutrition cohort. Discrimination (C-statistic) and calibration (the agreement between predicted and observed tumor risks) were assessed both internally and externally in 82,319 postmenopausal women from the Women’s Health Initiative study. We performed decision curve analysis to compare Model(ER+) and the Gail model (Model(Gail)) regarding their applicability in risk assessment for chemoprevention. RESULTS: Parity, number of full-term pregnancies, age at first full-term pregnancy and body height were only associated with ER+ tumors. Menopausal status, age at menarche and at menopause, hormone replacement therapy, postmenopausal body mass index, and alcohol intake were homogeneously associated with ER+ and ER- tumors. Internal validation yielded a C-statistic of 0.64 for Model(ER+) and 0.59 for Model(ER-). External validation reduced the C-statistic of Model(ER+) (0.59) and Model(Gail) (0.57). In external evaluation of calibration, Model(ER+) outperformed the Model(Gail): the former led to a 9% overestimation of the risk of ER+ tumors, while the latter yielded a 22% underestimation of the overall BC risk. Compared with the treat-all strategy, Model(ER+) produced equal or higher net benefits irrespective of the benefit-to-harm ratio of chemoprevention, while Model(Gail) did not produce higher net benefits unless the benefit-to-harm ratio was below 50. The clinical applicability, i.e. the area defined by the net benefit curve and the treat-all and treat-none strategies, was 12.7 × 10(− 6) for Model(ER+) and 3.0 × 10(− 6) for Model(Gail). CONCLUSIONS: Modeling heterogeneous epidemiological risk factors might yield little improvement in BC risk prediction. Nevertheless, a model specifically predictive of ER+ tumor risk could be more applicable than an omnibus model in risk assessment for chemoprevention. |
format | Online Article Text |
id | pubmed-6276150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-62761502018-12-06 Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts Li, Kuanrong Anderson, Garnet Viallon, Vivian Arveux, Patrick Kvaskoff, Marina Fournier, Agnès Krogh, Vittorio Tumino, Rosario Sánchez, Maria-Jose Ardanaz, Eva Chirlaque, María-Dolores Agudo, Antonio Muller, David C. Smith, Todd Tzoulaki, Ioanna Key, Timothy J. Bueno-de-Mesquita, Bas Trichopoulou, Antonia Bamia, Christina Orfanos, Philippos Kaaks, Rudolf Hüsing, Anika Fortner, Renée T. Zeleniuch-Jacquotte, Anne Sund, Malin Dahm, Christina C. Overvad, Kim Aune, Dagfinn Weiderpass, Elisabete Romieu, Isabelle Riboli, Elio Gunter, Marc J. Dossus, Laure Prentice, Ross Ferrari, Pietro Breast Cancer Res Research Article BACKGROUND: Few published breast cancer (BC) risk prediction models consider the heterogeneity of predictor variables between estrogen-receptor positive (ER+) and negative (ER-) tumors. Using data from two large cohorts, we examined whether modeling this heterogeneity could improve prediction. METHODS: We built two models, for ER+ (Model(ER+)) and ER- tumors (Model(ER-)), respectively, in 281,330 women (51% postmenopausal at recruitment) from the European Prospective Investigation into Cancer and Nutrition cohort. Discrimination (C-statistic) and calibration (the agreement between predicted and observed tumor risks) were assessed both internally and externally in 82,319 postmenopausal women from the Women’s Health Initiative study. We performed decision curve analysis to compare Model(ER+) and the Gail model (Model(Gail)) regarding their applicability in risk assessment for chemoprevention. RESULTS: Parity, number of full-term pregnancies, age at first full-term pregnancy and body height were only associated with ER+ tumors. Menopausal status, age at menarche and at menopause, hormone replacement therapy, postmenopausal body mass index, and alcohol intake were homogeneously associated with ER+ and ER- tumors. Internal validation yielded a C-statistic of 0.64 for Model(ER+) and 0.59 for Model(ER-). External validation reduced the C-statistic of Model(ER+) (0.59) and Model(Gail) (0.57). In external evaluation of calibration, Model(ER+) outperformed the Model(Gail): the former led to a 9% overestimation of the risk of ER+ tumors, while the latter yielded a 22% underestimation of the overall BC risk. Compared with the treat-all strategy, Model(ER+) produced equal or higher net benefits irrespective of the benefit-to-harm ratio of chemoprevention, while Model(Gail) did not produce higher net benefits unless the benefit-to-harm ratio was below 50. The clinical applicability, i.e. the area defined by the net benefit curve and the treat-all and treat-none strategies, was 12.7 × 10(− 6) for Model(ER+) and 3.0 × 10(− 6) for Model(Gail). CONCLUSIONS: Modeling heterogeneous epidemiological risk factors might yield little improvement in BC risk prediction. Nevertheless, a model specifically predictive of ER+ tumor risk could be more applicable than an omnibus model in risk assessment for chemoprevention. BioMed Central 2018-12-03 2018 /pmc/articles/PMC6276150/ /pubmed/30509329 http://dx.doi.org/10.1186/s13058-018-1073-0 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Li, Kuanrong Anderson, Garnet Viallon, Vivian Arveux, Patrick Kvaskoff, Marina Fournier, Agnès Krogh, Vittorio Tumino, Rosario Sánchez, Maria-Jose Ardanaz, Eva Chirlaque, María-Dolores Agudo, Antonio Muller, David C. Smith, Todd Tzoulaki, Ioanna Key, Timothy J. Bueno-de-Mesquita, Bas Trichopoulou, Antonia Bamia, Christina Orfanos, Philippos Kaaks, Rudolf Hüsing, Anika Fortner, Renée T. Zeleniuch-Jacquotte, Anne Sund, Malin Dahm, Christina C. Overvad, Kim Aune, Dagfinn Weiderpass, Elisabete Romieu, Isabelle Riboli, Elio Gunter, Marc J. Dossus, Laure Prentice, Ross Ferrari, Pietro Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts |
title | Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts |
title_full | Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts |
title_fullStr | Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts |
title_full_unstemmed | Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts |
title_short | Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts |
title_sort | risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276150/ https://www.ncbi.nlm.nih.gov/pubmed/30509329 http://dx.doi.org/10.1186/s13058-018-1073-0 |
work_keys_str_mv | AT likuanrong riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT andersongarnet riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT viallonvivian riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT arveuxpatrick riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT kvaskoffmarina riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT fournieragnes riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT kroghvittorio riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT tuminorosario riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT sanchezmariajose riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT ardanazeva riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT chirlaquemariadolores riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT agudoantonio riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT mullerdavidc riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT smithtodd riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT tzoulakiioanna riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT keytimothyj riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT buenodemesquitabas riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT trichopoulouantonia riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT bamiachristina riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT orfanosphilippos riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT kaaksrudolf riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT husinganika riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT fortnerreneet riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT zeleniuchjacquotteanne riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT sundmalin riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT dahmchristinac riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT overvadkim riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT aunedagfinn riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT weiderpasselisabete riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT romieuisabelle riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT ribolielio riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT guntermarcj riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT dossuslaure riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT prenticeross riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts AT ferraripietro riskpredictionforestrogenreceptorspecificbreastcancersintwolargeprospectivecohorts |