Cargando…
Machine-learned models using hematological inflammation markers in the prediction of short-term acute coronary syndrome outcomes
BACKGROUND: Increased systemic and local inflammation play a vital role in the pathophysiology of acute coronary syndrome. This study aimed to assess the usefulness of selected machine learning methods and hematological markers of inflammation in predicting short-term outcomes of acute coronary synd...
Autores principales: | Pieszko, Konrad, Hiczkiewicz, Jarosław, Budzianowski, Paweł, Rzeźniczak, Janusz, Budzianowski, Jan, Błaszczyński, Jerzy, Słowiński, Roman, Burchardt, Paweł |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276170/ https://www.ncbi.nlm.nih.gov/pubmed/30509300 http://dx.doi.org/10.1186/s12967-018-1702-5 |
Ejemplares similares
-
Predicting Long-Term Mortality after Acute Coronary Syndrome Using Machine Learning Techniques and Hematological Markers
por: Pieszko, Konrad, et al.
Publicado: (2019) -
The Role of Hematological Indices in Patients with Acute Coronary Syndrome
por: Budzianowski, Jan, et al.
Publicado: (2017) -
Predictors of atrial fibrillation early recurrence following cryoballoon ablation of pulmonary veins using statistical assessment and machine learning algorithms
por: Budzianowski, Jan, et al.
Publicado: (2018) -
Clinical applications of artificial intelligence in cardiology on the verge of the decade
por: Pieszko, Konrad, et al.
Publicado: (2021) -
The risk for subsequent coronary interventions in a local Polish population
por: Hiczkiewicz, Jaroslaw, et al.
Publicado: (2020)