Cargando…

A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering

This article presents the main technical features and performance of the upgraded beamline ID02 at the ESRF. The beamline combines different small-angle X-ray scattering techniques in one unique instrument, enabling static and kinetic investigations from ångström to micrometre size scales and time r...

Descripción completa

Detalles Bibliográficos
Autores principales: Narayanan, Theyencheri, Sztucki, Michael, Van Vaerenbergh, Pierre, Léonardon, Joachim, Gorini, Jacques, Claustre, Laurent, Sever, Franc, Morse, John, Boesecke, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276275/
https://www.ncbi.nlm.nih.gov/pubmed/30546286
http://dx.doi.org/10.1107/S1600576718012748
Descripción
Sumario:This article presents the main technical features and performance of the upgraded beamline ID02 at the ESRF. The beamline combines different small-angle X-ray scattering techniques in one unique instrument, enabling static and kinetic investigations from ångström to micrometre size scales and time resolution down to the sub-millisecond range. The main component of the instrument is an evacuated detector tube of length 34 m and diameter 2 m. Several different detectors are housed inside a motorized wagon that travels along a rail system, allowing an automated change of the sample–detector distance from about 1 to 31 m as well as selection of the desired detector. For optional combined wide-angle scattering measurements, a wide-angle detector is installed at the entrance cone of the tube. A scattering vector (of magnitude q) range of 0.002 ≤ q ≤ 50 nm(−1) is covered with two sample–detector distances and a single-beam setting for an X-ray wavelength of 1 Å. In the high-resolution mode, two-dimensional ultra-small-angle X-ray scattering patterns down to q < 0.001 nm(−1) can be recorded, and the resulting one-dimensional profiles have superior quality as compared to those measured with an optimized Bonse–Hart instrument. In the highest-resolution mode, the beam is nearly coherent, thereby permitting multispeckle ultra-small-angle X-ray photon correlation spectroscopy measurements. The main applications of the instrument include the elucidation of static and transient hierarchical structures, and nonequilibrium dynamics in soft matter and biophysical systems.