Cargando…

Fully Automatic Segmentation and Three-Dimensional Reconstruction of the Liver in CT Images

Automatic segmentation and three-dimensional reconstruction of the liver is important for liver disease diagnosis and surgical treatment. However, the shape of the imaged 2D liver in each CT image changes dramatically across the slices. In all slices, the imaged 2D liver is connected with other orga...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, ZhenZhou, Zhang, Cunshan, Jiao, Ticao, Gao, MingLiang, Zou, Guofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276449/
https://www.ncbi.nlm.nih.gov/pubmed/30581550
http://dx.doi.org/10.1155/2018/6797102
Descripción
Sumario:Automatic segmentation and three-dimensional reconstruction of the liver is important for liver disease diagnosis and surgical treatment. However, the shape of the imaged 2D liver in each CT image changes dramatically across the slices. In all slices, the imaged 2D liver is connected with other organs, and the connected organs also vary across the slices. In many slices, the intensities of the connected organs are the same with that of the liver. All these facts make automatic segmentation of the liver in the CT image an extremely difficult task. In this paper, we propose a heuristic approach to segment the liver automatically based on multiple thresholds. The thresholds are computed based on the slope difference distribution that has been proposed and verified in the previous research. Different organs in the CT image are segmented with the automatically computed thresholds, respectively. Then, different segmentation results are combined to delineate the boundary of the liver robustly. After the boundaries of the 2D liver in all the slices are identified, they are combined to form the 3D shape of the liver with a global energy minimization function. Experimental results verified the effectiveness of all the proposed image processing algorithms in automatic and robust segmentation of the liver in CT images.