Cargando…

EIT Imaging of Intracranial Hemorrhage in Rabbit Models Is Influenced by the Intactness of Cranium

Electrical impedance tomography (EIT) has been shown to be a promising, bedside imaging method to monitor the progression of intracranial hemorrhage (ICH). However, the observed impedance changes within brain related to ICH differed among groups, and we hypothesized that the cranium intactness (open...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Meng, Liu, Xue-Chao, Li, Hao-Ting, Xu, Can-Hua, Yang, Bin, Wang, Hang, Shi, Xue-Tao, Dong, Xiu-Zhen, Fu, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276518/
https://www.ncbi.nlm.nih.gov/pubmed/30581843
http://dx.doi.org/10.1155/2018/1321862
_version_ 1783378029889716224
author Dai, Meng
Liu, Xue-Chao
Li, Hao-Ting
Xu, Can-Hua
Yang, Bin
Wang, Hang
Shi, Xue-Tao
Dong, Xiu-Zhen
Fu, Feng
author_facet Dai, Meng
Liu, Xue-Chao
Li, Hao-Ting
Xu, Can-Hua
Yang, Bin
Wang, Hang
Shi, Xue-Tao
Dong, Xiu-Zhen
Fu, Feng
author_sort Dai, Meng
collection PubMed
description Electrical impedance tomography (EIT) has been shown to be a promising, bedside imaging method to monitor the progression of intracranial hemorrhage (ICH). However, the observed impedance changes within brain related to ICH differed among groups, and we hypothesized that the cranium intactness (open or closed) may be the one of potential reasons leading to the difference. Therefore, the aim of this study was to investigate this effect of open or closed cranium on impedance changes within brain in the rabbit ICH model. In this study, we first established the ICH model in 12 rabbits with the open cranium and in 12 rabbits with the closed cranium. Simultaneously, EIT measurements on the rabbits' heads were performed to record the impedance changes caused by injecting the autologous nonheparinized blood into cerebral parenchyma. Finally, the regional impedance changes on EIT images and the whole impedance changes were analyzed. It was surprisingly found that when the cranium was open, the impedance of the area where the blood was injected, as well as the whole brain impedance, decreased with the amount of blood being injected; when the cranium was closed, while the impedance of the area where blood was not injected continued to increase, the impedance of the area where blood was injected decreased within 20s of the blood being injected and then remained almost unchanged, and the whole brain impedance had a small fall and then notably increased. The results have validated that the cranium completeness (open or closed) has influences on impedance changes within brain when using EIT to monitor ICH. In future study on application of EIT to monitor ICH, the cranium completeness should be taken into account for establishing an ICH model and analyzing the corresponding EIT results.
format Online
Article
Text
id pubmed-6276518
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-62765182018-12-23 EIT Imaging of Intracranial Hemorrhage in Rabbit Models Is Influenced by the Intactness of Cranium Dai, Meng Liu, Xue-Chao Li, Hao-Ting Xu, Can-Hua Yang, Bin Wang, Hang Shi, Xue-Tao Dong, Xiu-Zhen Fu, Feng Biomed Res Int Research Article Electrical impedance tomography (EIT) has been shown to be a promising, bedside imaging method to monitor the progression of intracranial hemorrhage (ICH). However, the observed impedance changes within brain related to ICH differed among groups, and we hypothesized that the cranium intactness (open or closed) may be the one of potential reasons leading to the difference. Therefore, the aim of this study was to investigate this effect of open or closed cranium on impedance changes within brain in the rabbit ICH model. In this study, we first established the ICH model in 12 rabbits with the open cranium and in 12 rabbits with the closed cranium. Simultaneously, EIT measurements on the rabbits' heads were performed to record the impedance changes caused by injecting the autologous nonheparinized blood into cerebral parenchyma. Finally, the regional impedance changes on EIT images and the whole impedance changes were analyzed. It was surprisingly found that when the cranium was open, the impedance of the area where the blood was injected, as well as the whole brain impedance, decreased with the amount of blood being injected; when the cranium was closed, while the impedance of the area where blood was not injected continued to increase, the impedance of the area where blood was injected decreased within 20s of the blood being injected and then remained almost unchanged, and the whole brain impedance had a small fall and then notably increased. The results have validated that the cranium completeness (open or closed) has influences on impedance changes within brain when using EIT to monitor ICH. In future study on application of EIT to monitor ICH, the cranium completeness should be taken into account for establishing an ICH model and analyzing the corresponding EIT results. Hindawi 2018-11-19 /pmc/articles/PMC6276518/ /pubmed/30581843 http://dx.doi.org/10.1155/2018/1321862 Text en Copyright © 2018 Meng Dai et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Dai, Meng
Liu, Xue-Chao
Li, Hao-Ting
Xu, Can-Hua
Yang, Bin
Wang, Hang
Shi, Xue-Tao
Dong, Xiu-Zhen
Fu, Feng
EIT Imaging of Intracranial Hemorrhage in Rabbit Models Is Influenced by the Intactness of Cranium
title EIT Imaging of Intracranial Hemorrhage in Rabbit Models Is Influenced by the Intactness of Cranium
title_full EIT Imaging of Intracranial Hemorrhage in Rabbit Models Is Influenced by the Intactness of Cranium
title_fullStr EIT Imaging of Intracranial Hemorrhage in Rabbit Models Is Influenced by the Intactness of Cranium
title_full_unstemmed EIT Imaging of Intracranial Hemorrhage in Rabbit Models Is Influenced by the Intactness of Cranium
title_short EIT Imaging of Intracranial Hemorrhage in Rabbit Models Is Influenced by the Intactness of Cranium
title_sort eit imaging of intracranial hemorrhage in rabbit models is influenced by the intactness of cranium
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276518/
https://www.ncbi.nlm.nih.gov/pubmed/30581843
http://dx.doi.org/10.1155/2018/1321862
work_keys_str_mv AT daimeng eitimagingofintracranialhemorrhageinrabbitmodelsisinfluencedbytheintactnessofcranium
AT liuxuechao eitimagingofintracranialhemorrhageinrabbitmodelsisinfluencedbytheintactnessofcranium
AT lihaoting eitimagingofintracranialhemorrhageinrabbitmodelsisinfluencedbytheintactnessofcranium
AT xucanhua eitimagingofintracranialhemorrhageinrabbitmodelsisinfluencedbytheintactnessofcranium
AT yangbin eitimagingofintracranialhemorrhageinrabbitmodelsisinfluencedbytheintactnessofcranium
AT wanghang eitimagingofintracranialhemorrhageinrabbitmodelsisinfluencedbytheintactnessofcranium
AT shixuetao eitimagingofintracranialhemorrhageinrabbitmodelsisinfluencedbytheintactnessofcranium
AT dongxiuzhen eitimagingofintracranialhemorrhageinrabbitmodelsisinfluencedbytheintactnessofcranium
AT fufeng eitimagingofintracranialhemorrhageinrabbitmodelsisinfluencedbytheintactnessofcranium