Cargando…
Automatic Seizure Detection Based on Nonlinear Dynamical Analysis of EEG Signals and Mutual Information
INTRODUCTION: In this paper, nonlinear dynamical analysis based on Recurrence Quantification Analysis (RQA) is employed to characterize the nonlinear EEG dynamics. RQA can provide useful quantitative information on the regular, chaotic, or stochastic property of the underlying dynamics. METHODS: We...
Autores principales: | Akbarian, Behnaz, Erfanian, Abbas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Iranian Neuroscience Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276534/ https://www.ncbi.nlm.nih.gov/pubmed/30519381 http://dx.doi.org/10.32598/bcn.9.4.227 |
Ejemplares similares
-
Mutual Information of Multiple Rhythms for EEG Signals
por: Ibáñez-Molina, Antonio José, et al.
Publicado: (2020) -
Automatic seizure detection based on imaged-EEG signals through fully convolutional networks
por: Gómez, Catalina, et al.
Publicado: (2020) -
Spatiotemporal evolution of epileptic seizure based on mutual information and dynamic brain network
por: Ma, Mengnan, et al.
Publicado: (2021) -
Automatic seizure detection using three-dimensional CNN based on multi-channel EEG
por: Wei, Xiaoyan, et al.
Publicado: (2018) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018)