Cargando…
On your marks, get SET(D1A): the race to protect stalled replication forks
We recently identified that methylation of lysine 4 of histone H3 (H3K4) by SETD1A (SET domain containing 1A) maintains genome stability by protecting newly-replicated DNA from degradation. Mechanistically, SETD1A-dependent histone methylation regulates nucleosome mobilisation by FANCD2 (FA compleme...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276854/ https://www.ncbi.nlm.nih.gov/pubmed/30525090 http://dx.doi.org/10.1080/23723556.2018.1511209 |
Sumario: | We recently identified that methylation of lysine 4 of histone H3 (H3K4) by SETD1A (SET domain containing 1A) maintains genome stability by protecting newly-replicated DNA from degradation. Mechanistically, SETD1A-dependent histone methylation regulates nucleosome mobilisation by FANCD2 (FA complementation group D2), a crucial step in maintaining genome integrity with important implications in chemo-sensitivity. |
---|