Cargando…
Complementary feature selection from alternative splicing events and gene expression for phenotype prediction
MOTIVATION: A central task of bioinformatics is to develop sensitive and specific means of providing medical prognoses from biomarker patterns. Common methods to predict phenotypes in RNA-Seq datasets utilize machine learning algorithms trained via gene expression. Isoforms, however, generated from...
Autores principales: | Labuzzetta, Charles J, Antonio, Margaret L, Watson, Patricia M, Wilson, Robert C, Laboissonniere, Lauren A, Trimarchi, Jeffrey M, Genc, Baris, Ozdinler, P Hande, Watson, Dennis K, Anderson, Paul E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276944/ https://www.ncbi.nlm.nih.gov/pubmed/27587658 http://dx.doi.org/10.1093/bioinformatics/btw430 |
Ejemplares similares
-
L(1) regularization facilitates detection of cell type-specific parameters in dynamical systems
por: Steiert, Bernhard, et al.
Publicado: (2016) -
Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons
por: Genc, Baris, et al.
Publicado: (2019) -
Integrative deep models for alternative splicing
por: Jha, Anupama, et al.
Publicado: (2017) -
Generic Substitution—Another Form of Alternative Medicine
por: Griffin, J. P.
Publicado: (1992) -
The use of positive end expiratory pressure in patients affected by COVID-19: Time to reconsider the relation between morphology and physiology
por: Perchiazzi, Gaetano, et al.
Publicado: (2020)