Cargando…
Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics
The dynamics of cellular membranes is primarily determined by lipid species forming a bilayer. Proteins are considered mainly as effector molecules of diverse cellular processes. In addition to large assemblies of proteins, which were found to influence properties of fluid membranes, biological memb...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277224/ https://www.ncbi.nlm.nih.gov/pubmed/30508721 http://dx.doi.org/10.1016/j.isci.2018.11.026 |
_version_ | 1783378117026381824 |
---|---|
author | Olšinová, Marie Jurkiewicz, Piotr Kishko, Iryna Sýkora, Jan Sabó, Ján Hof, Martin Cwiklik, Lukasz Cebecauer, Marek |
author_facet | Olšinová, Marie Jurkiewicz, Piotr Kishko, Iryna Sýkora, Jan Sabó, Ján Hof, Martin Cwiklik, Lukasz Cebecauer, Marek |
author_sort | Olšinová, Marie |
collection | PubMed |
description | The dynamics of cellular membranes is primarily determined by lipid species forming a bilayer. Proteins are considered mainly as effector molecules of diverse cellular processes. In addition to large assemblies of proteins, which were found to influence properties of fluid membranes, biological membranes are densely populated by small, highly mobile proteins. However, little is known about the effect of such proteins on the dynamics of membranes. Using synthetic peptides, we demonstrate that transmembrane helices interfere with the mobility of membrane components by trapping lipid acyl chains on their rough surfaces. The effect is more pronounced in the presence of cholesterol, which segregates from the rough surface of helical peptides. This may contribute to the formation or stabilization of membrane heterogeneities. Since roughness is a general property of helical transmembrane segments, our results suggest that, independent of their size or cytoskeleton linkage, integral membrane proteins affect local membrane dynamics and organization. |
format | Online Article Text |
id | pubmed-6277224 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-62772242018-12-14 Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics Olšinová, Marie Jurkiewicz, Piotr Kishko, Iryna Sýkora, Jan Sabó, Ján Hof, Martin Cwiklik, Lukasz Cebecauer, Marek iScience Article The dynamics of cellular membranes is primarily determined by lipid species forming a bilayer. Proteins are considered mainly as effector molecules of diverse cellular processes. In addition to large assemblies of proteins, which were found to influence properties of fluid membranes, biological membranes are densely populated by small, highly mobile proteins. However, little is known about the effect of such proteins on the dynamics of membranes. Using synthetic peptides, we demonstrate that transmembrane helices interfere with the mobility of membrane components by trapping lipid acyl chains on their rough surfaces. The effect is more pronounced in the presence of cholesterol, which segregates from the rough surface of helical peptides. This may contribute to the formation or stabilization of membrane heterogeneities. Since roughness is a general property of helical transmembrane segments, our results suggest that, independent of their size or cytoskeleton linkage, integral membrane proteins affect local membrane dynamics and organization. Elsevier 2018-11-20 /pmc/articles/PMC6277224/ /pubmed/30508721 http://dx.doi.org/10.1016/j.isci.2018.11.026 Text en © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Olšinová, Marie Jurkiewicz, Piotr Kishko, Iryna Sýkora, Jan Sabó, Ján Hof, Martin Cwiklik, Lukasz Cebecauer, Marek Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics |
title | Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics |
title_full | Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics |
title_fullStr | Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics |
title_full_unstemmed | Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics |
title_short | Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics |
title_sort | roughness of transmembrane helices reduces lipid membrane dynamics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277224/ https://www.ncbi.nlm.nih.gov/pubmed/30508721 http://dx.doi.org/10.1016/j.isci.2018.11.026 |
work_keys_str_mv | AT olsinovamarie roughnessoftransmembranehelicesreduceslipidmembranedynamics AT jurkiewiczpiotr roughnessoftransmembranehelicesreduceslipidmembranedynamics AT kishkoiryna roughnessoftransmembranehelicesreduceslipidmembranedynamics AT sykorajan roughnessoftransmembranehelicesreduceslipidmembranedynamics AT sabojan roughnessoftransmembranehelicesreduceslipidmembranedynamics AT hofmartin roughnessoftransmembranehelicesreduceslipidmembranedynamics AT cwikliklukasz roughnessoftransmembranehelicesreduceslipidmembranedynamics AT cebecauermarek roughnessoftransmembranehelicesreduceslipidmembranedynamics |