Cargando…
Deciphering deterministic factors of predation pressures in deep time
Predation pressure occurs as a result of predation frequency and prey vulnerability. Although quantifying these factors individually is essential to precisely understand predation effects on evolution, they have been generally less accessible. Here, using a modified form of Poisson function, we quan...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277388/ https://www.ncbi.nlm.nih.gov/pubmed/30510248 http://dx.doi.org/10.1038/s41598-018-35505-1 |
Sumario: | Predation pressure occurs as a result of predation frequency and prey vulnerability. Although quantifying these factors individually is essential to precisely understand predation effects on evolution, they have been generally less accessible. Here, using a modified form of Poisson function, we quantified the frequencies and vulnerabilities, as well as the resulting predation pressures, concerning the shell drillers versus prey interactions from the Eocene and Miocene periods. Our analysis quantitatively revealed that low-spired shells tend to show increased vulnerability except for two planispiral species that exhibit an unexpectedly low vulnerability. We then identified septal structures within the two species that resemble those in nautiloids and ammonoids but which provided a defensive role against the predators, enhancing the mean lifetime by approximately 20%. The current approach enables us to quantitatively trace how predation frequency and prey vulnerability have interacted, been transformed spatio-temporally, and been a driving force of evolution at geological time scales. |
---|