Cargando…
Deciphering deterministic factors of predation pressures in deep time
Predation pressure occurs as a result of predation frequency and prey vulnerability. Although quantifying these factors individually is essential to precisely understand predation effects on evolution, they have been generally less accessible. Here, using a modified form of Poisson function, we quan...
Autores principales: | Ishikawa, Makiko, Kase, Tomoki, Tsutsui, Hidekazu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277388/ https://www.ncbi.nlm.nih.gov/pubmed/30510248 http://dx.doi.org/10.1038/s41598-018-35505-1 |
Ejemplares similares
-
Comparison of Deep Learning and Deterministic Algorithms for Control Modeling
por: Zhai, Hanfeng, et al.
Publicado: (2022) -
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient
por: Shi, Haibo, et al.
Publicado: (2018) -
Network Architecture for Optimizing Deep Deterministic Policy Gradient Algorithms
por: Zhang, Haifei, et al.
Publicado: (2022) -
Schooling behavior driven complexities in a fear-induced prey–predator system with harvesting under deterministic and stochastic environments
por: Sk, Nazmul, et al.
Publicado: (2023) -
A Deterministic Analysis of Genome Integrity during Neoplastic Growth in Drosophila
por: Sievers, Cem, et al.
Publicado: (2014)