Cargando…
Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations
Due to spectral sensitivity effects, using a single standard spectrum leads to a large uncertainty when estimating the yearly averaged photovoltaic efficiency or energy yield. Here we demonstrate how machine learning techniques can reduce the yearly spectral sets by three orders of magnitude to sets...
Autores principales: | Ripalda, J. M., Buencuerpo, J., García, I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277435/ https://www.ncbi.nlm.nih.gov/pubmed/30510195 http://dx.doi.org/10.1038/s41467-018-07431-3 |
Ejemplares similares
-
Cloaking of solar cell contacts at the onset of Rayleigh scattering
por: San Román, Etor, et al.
Publicado: (2016) -
Nano-cones for broadband light coupling to high index substrates
por: Buencuerpo, J., et al.
Publicado: (2016) -
An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting
por: Wu, Dan, et al.
Publicado: (2017) -
Location-Specific Spectral and Thermal Effects in Tracking and Fixed Tilt Photovoltaic Systems
por: Ripalda, José M., et al.
Publicado: (2020) -
Machine learning in spectral domain
por: Giambagli, Lorenzo, et al.
Publicado: (2021)