Cargando…
Prediction of Drug-Likeness Using Deep Autoencoder Neural Networks
Due to diverse reasons, most drug candidates cannot eventually become marketed drugs. Developing reliable computational methods for prediction of drug-likeness of candidate compounds is of vital importance to improve the success rate of drug discovery and development. In this study, we used a fully...
Autores principales: | Hu, Qiwan, Feng, Mudong, Lai, Luhua, Pei, Jianfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277570/ https://www.ncbi.nlm.nih.gov/pubmed/30538725 http://dx.doi.org/10.3389/fgene.2018.00585 |
Ejemplares similares
-
Drug-protein interaction prediction via variational autoencoders and attention mechanisms
por: Zhang, Yue, et al.
Publicado: (2022) -
GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network
por: Liu, Zhixian, et al.
Publicado: (2021) -
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks
por: Zhang, Sen, et al.
Publicado: (2019) -
Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network
por: Li, Xinxing, et al.
Publicado: (2023) -
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
por: Feng, Xiang, et al.
Publicado: (2022)