Cargando…

Visual-Somatosensory Integration and Quantitative Gait Performance in Aging

Background: The ability to integrate information across sensory modalities is an integral aspect of mobility. Yet, the association between visual-somatosensory (VS) integration and gait performance has not been well-established in aging. Methods: A total of 333 healthy older adults (mean age 76.53 ±...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahoney, Jeannette R., Verghese, Joe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277592/
https://www.ncbi.nlm.nih.gov/pubmed/30538628
http://dx.doi.org/10.3389/fnagi.2018.00377
_version_ 1783378184966766592
author Mahoney, Jeannette R.
Verghese, Joe
author_facet Mahoney, Jeannette R.
Verghese, Joe
author_sort Mahoney, Jeannette R.
collection PubMed
description Background: The ability to integrate information across sensory modalities is an integral aspect of mobility. Yet, the association between visual-somatosensory (VS) integration and gait performance has not been well-established in aging. Methods: A total of 333 healthy older adults (mean age 76.53 ± 6.22; 53% female) participated in a visual-somatosensory simple reaction time task and underwent quantitative gait assessment using an instrumented walkway. Magnitude of VS integration was assessed using probability models, and then categorized into four integration classifications (superior, good, poor, or deficient). Associations of VS integration with three independent gait factors (Pace, Rhythm, and Variability derived by factor analysis method) were tested at cross-section using linear regression analyses. Given overlaps in neural circuitry necessary for both multisensory integration and goal-directed locomotion, we hypothesized that VS integration would be significantly associated with pace but not rhythm which is a more automatic process controlled mainly through brainstem and spinal networks. Results: In keeping with our hypothesis, magnitude of VS integration was a strong predictor of pace (β = 0.12, p < 0.05) but not rhythm (β = −0.01, p = 0.83) in fully-adjusted models. While there was a trend for the association of magnitude of VS integration with variability (β = −0.11, p = 0.051), post-hoc testing of individual gait variables that loaded highest on the variability factor revealed that stride length variability (β = −0.13, p = 0.03) and not swing time variability (β = −0.08, p = 0.15) was significantly associated with magnitude of VS integration. Of the cohort, 29% had superior, 26% had good, 29% had poor, and 16% had deficient VS integration effects. Conclusions: Worse VS integration in aging is associated with worse spatial but not temporal aspects of gait performance.
format Online
Article
Text
id pubmed-6277592
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-62775922018-12-11 Visual-Somatosensory Integration and Quantitative Gait Performance in Aging Mahoney, Jeannette R. Verghese, Joe Front Aging Neurosci Neuroscience Background: The ability to integrate information across sensory modalities is an integral aspect of mobility. Yet, the association between visual-somatosensory (VS) integration and gait performance has not been well-established in aging. Methods: A total of 333 healthy older adults (mean age 76.53 ± 6.22; 53% female) participated in a visual-somatosensory simple reaction time task and underwent quantitative gait assessment using an instrumented walkway. Magnitude of VS integration was assessed using probability models, and then categorized into four integration classifications (superior, good, poor, or deficient). Associations of VS integration with three independent gait factors (Pace, Rhythm, and Variability derived by factor analysis method) were tested at cross-section using linear regression analyses. Given overlaps in neural circuitry necessary for both multisensory integration and goal-directed locomotion, we hypothesized that VS integration would be significantly associated with pace but not rhythm which is a more automatic process controlled mainly through brainstem and spinal networks. Results: In keeping with our hypothesis, magnitude of VS integration was a strong predictor of pace (β = 0.12, p < 0.05) but not rhythm (β = −0.01, p = 0.83) in fully-adjusted models. While there was a trend for the association of magnitude of VS integration with variability (β = −0.11, p = 0.051), post-hoc testing of individual gait variables that loaded highest on the variability factor revealed that stride length variability (β = −0.13, p = 0.03) and not swing time variability (β = −0.08, p = 0.15) was significantly associated with magnitude of VS integration. Of the cohort, 29% had superior, 26% had good, 29% had poor, and 16% had deficient VS integration effects. Conclusions: Worse VS integration in aging is associated with worse spatial but not temporal aspects of gait performance. Frontiers Media S.A. 2018-11-27 /pmc/articles/PMC6277592/ /pubmed/30538628 http://dx.doi.org/10.3389/fnagi.2018.00377 Text en Copyright © 2018 Mahoney and Verghese. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Mahoney, Jeannette R.
Verghese, Joe
Visual-Somatosensory Integration and Quantitative Gait Performance in Aging
title Visual-Somatosensory Integration and Quantitative Gait Performance in Aging
title_full Visual-Somatosensory Integration and Quantitative Gait Performance in Aging
title_fullStr Visual-Somatosensory Integration and Quantitative Gait Performance in Aging
title_full_unstemmed Visual-Somatosensory Integration and Quantitative Gait Performance in Aging
title_short Visual-Somatosensory Integration and Quantitative Gait Performance in Aging
title_sort visual-somatosensory integration and quantitative gait performance in aging
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277592/
https://www.ncbi.nlm.nih.gov/pubmed/30538628
http://dx.doi.org/10.3389/fnagi.2018.00377
work_keys_str_mv AT mahoneyjeannetter visualsomatosensoryintegrationandquantitativegaitperformanceinaging
AT verghesejoe visualsomatosensoryintegrationandquantitativegaitperformanceinaging