Cargando…

Reviewing the role of healthy volunteer studies in drug development

BACKGROUND: With the exception of genotoxic oncology drugs, first-in-human, Phase 1 clinical studies of investigational drugs have traditionally been conducted in healthy volunteers (HVs). The primary goal of these studies is to investigate the pharmacokinetics and pharmacodynamics of a novel drug c...

Descripción completa

Detalles Bibliográficos
Autores principales: Karakunnel, Joyson J., Bui, Nam, Palaniappan, Latha, Schmidt, Keith T., Mahaffey, Kenneth W., Morrison, Briggs, Figg, William D., Kummar, Shivaani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278009/
https://www.ncbi.nlm.nih.gov/pubmed/30509294
http://dx.doi.org/10.1186/s12967-018-1710-5
Descripción
Sumario:BACKGROUND: With the exception of genotoxic oncology drugs, first-in-human, Phase 1 clinical studies of investigational drugs have traditionally been conducted in healthy volunteers (HVs). The primary goal of these studies is to investigate the pharmacokinetics and pharmacodynamics of a novel drug candidate, determine appropriate dosing, and document safety and tolerability. MAIN BODY: When tailored to specific study objectives, HV studies are beneficial to manufacturers and patients alike and can be applied to both non-oncology and oncology drug development. Enrollment of HVs not only increases study accrual rates for dose-escalation studies but also alleviates the ethical concern of enrolling patients with disease in a short-term study at subtherapeutic doses when other studies (e.g. Phase 2 or Phase 3 studies) may be more appropriate for the patient. The use of HVs in non-oncology Phase 1 clinical trials is relatively safe but nonetheless poses ethical challenges because of the potential risks to which HVs are exposed. In general, most adverse events associated with non-oncology drugs are mild in severity, and serious adverse events are rare, but examples of severe toxicity have been reported. The use of HVs in the clinical development of oncology drugs is more limited but is nonetheless useful for evaluating clinical pharmacology and establishing an appropriate starting dose for studies in cancer patients. During the development of oncology drugs, clinical pharmacology studies in HVs have been used to assess pharmacokinetics, drug metabolism, food effects, potential drug–drug interactions, effects of hepatic and renal impairment, and other pharmacologic parameters vital for clinical decision-making in oncology. Studies in HVs are also being used to evaluate biosimilars versus established anticancer biologic agents. CONCLUSION: A thorough assessment of toxicity and pharmacology throughout the drug development process is critical to ensure the safety of HVs. With the appropriate safeguards, HVs will continue to play an important role in future drug development.