Cargando…

Novel Rhodanine Derivative, 5-[4-(4-Fluorophenoxy) phenyl]methylene-3-{4-[3-(4-methylpiperazin-1-yl) propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride, Induces Apoptosis via Mitochondria Dysfunction and Endoplasmic Reticulum Stress in Human Colon Cancer Cells

We previously reported that 5-[4-(4-fluorophenoxy) phenyl] methylene-3-{4-[3-(4-methylpiperazin-1-yl)propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride (KSK05104) has potent, selective and metabolically stable IKKβ inhibitory activities. However, the apoptosis-inducing of KSK05104 and its und...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Hye-Uk, Lee, Jeong-Hun, Chung, Kyung-Sook, Hong, Joo Young, Choi, Jung-Hye, Kim, Soo-Dong, Roh, Eun Joo, Shin, Kye Jung, Lee, Kyung-Tae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278386/
https://www.ncbi.nlm.nih.gov/pubmed/30404185
http://dx.doi.org/10.3390/molecules23112895
Descripción
Sumario:We previously reported that 5-[4-(4-fluorophenoxy) phenyl] methylene-3-{4-[3-(4-methylpiperazin-1-yl)propoxy]phenyl}-2-thioxo-4-thiazolidinone dihydrochloride (KSK05104) has potent, selective and metabolically stable IKKβ inhibitory activities. However, the apoptosis-inducing of KSK05104 and its underlying mechanism have not yet been elucidated in human colon cancer cells. We show that KSK05104 triggered apoptosis, as indicated by externalization of Annexin V-targeted phosphatidylserine residues in HT-29 and HCT-116 cells. KSK05104 induced the activation of caspase-8, -9, and -3, and the cleavage of poly (ADP ribose) polymerase-1 (PARP-1). KSK05104-induced apoptosis was significantly suppressed by pretreatment with z-VAD-fmk (a broad caspase inhibitor). KSK05104 also induced release of cytochrome c (Cyt c), apoptosis inducing factor (AIF), and endonuclease G (Endo G) by damaging mitochondria, resulting in caspase-dependent and -independent apoptotic cell death. KSK05104 triggered endoplasmic reticulum (ER) stress and changed the intracellular calcium level ([Ca(2+)](i)). Interestingly, treatment with KSK05104 activated not only ER stress marker proteins including inositol-requiring enzyme 1-alpha (IRE-1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), but also μ-calpain, and caspase-12 in a time-dependent manner. KSK05104-induced apoptosis substantially decreased in the presence of BAPTA/AM (an intracellular calcium chelator). Taken together, these results suggest that mitochondrial dysfunction and ER stress contribute to KSK05104-induced apoptosis in human colon cancer cells.