Cargando…
Prediction of the Formation of Reactive Metabolites by A Novel Classifier Approach Based on Enrichment Factor Optimization (EFO) as Implemented in the VEGA Program
The study is aimed at developing linear classifiers to predict the capacity of a given substrate to yield reactive metabolites. While most of the hitherto reported predictive models are based on the occurrence of known structural alerts (e.g., the presence of toxophoric groups), the present study is...
Autores principales: | Mazzolari, Angelica, Vistoli, Giulio, Testa, Bernard, Pedretti, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278469/ https://www.ncbi.nlm.nih.gov/pubmed/30428514 http://dx.doi.org/10.3390/molecules23112955 |
Ejemplares similares
-
Rescoring and Linearly Combining: A Highly Effective Consensus Strategy for Virtual Screening Campaigns
por: Pedretti, Alessandro, et al.
Publicado: (2019) -
MetaTREE, a Novel Database Focused on Metabolic Trees, Predicts an Important Detoxification Mechanism: The Glutathione Conjugation
por: Mazzolari, Angelica, et al.
Publicado: (2021) -
MetaClass, a Comprehensive Classification System for Predicting the Occurrence of Metabolic Reactions Based on the MetaQSAR Database
por: Mazzolari, Angelica, et al.
Publicado: (2021) -
Obesity and Type 2 Diabetes: Adiposopathy as a Triggering Factor and Therapeutic Options
por: Artasensi, Angelica, et al.
Publicado: (2023) -
MetaSpot: A General Approach for Recognizing the Reactive Atoms Undergoing Metabolic Reactions Based on the MetaQSAR Database
por: Mazzolari, Angelica, et al.
Publicado: (2023)