Cargando…

Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast

Much is known about the regulatory elements controlling the cell cycle in fission yeast (Schizosaccharomyces pombe). This regulation is mainly done by the (cyclin-dependent kinase/cyclin) complex (Cdc2/Cdc13) that activates specific target genes and proteins via phosphorylation events during the cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Humaidan, Dania, Breinig, Frank, Helms, Volkhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279014/
https://www.ncbi.nlm.nih.gov/pubmed/30513113
http://dx.doi.org/10.1371/journal.pone.0208515
_version_ 1783378463966625792
author Humaidan, Dania
Breinig, Frank
Helms, Volkhard
author_facet Humaidan, Dania
Breinig, Frank
Helms, Volkhard
author_sort Humaidan, Dania
collection PubMed
description Much is known about the regulatory elements controlling the cell cycle in fission yeast (Schizosaccharomyces pombe). This regulation is mainly done by the (cyclin-dependent kinase/cyclin) complex (Cdc2/Cdc13) that activates specific target genes and proteins via phosphorylation events during the cell cycle in a time-dependent manner. However, more work is still needed to complement the existing gaps in the current fission yeast gene regulatory network to be able to overcome abnormalities in its growth, repair and development, i.e. explain many phenomena including mitotic catastrophe. In this work we complement the previously presented core oscillator of the cell cycle of fission yeast by selected phosphorylation events and study their effects on the temporal evolution of the core oscillator based Boolean network. Thereby, we attempt to establish a regulatory link between the autonomous cell cycle oscillator and the remainder of the cell. We suggest the unclear yet regulatory effect of phosphorylation on the added components, and discuss many unreported points regarding the temporal evolution of the cell cycle and its components. To better visualize the results regardless of the programming background we developed an Android application that can be used to run the core and extended model of the fission yeast cell cycle step by step.
format Online
Article
Text
id pubmed-6279014
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-62790142018-12-20 Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast Humaidan, Dania Breinig, Frank Helms, Volkhard PLoS One Research Article Much is known about the regulatory elements controlling the cell cycle in fission yeast (Schizosaccharomyces pombe). This regulation is mainly done by the (cyclin-dependent kinase/cyclin) complex (Cdc2/Cdc13) that activates specific target genes and proteins via phosphorylation events during the cell cycle in a time-dependent manner. However, more work is still needed to complement the existing gaps in the current fission yeast gene regulatory network to be able to overcome abnormalities in its growth, repair and development, i.e. explain many phenomena including mitotic catastrophe. In this work we complement the previously presented core oscillator of the cell cycle of fission yeast by selected phosphorylation events and study their effects on the temporal evolution of the core oscillator based Boolean network. Thereby, we attempt to establish a regulatory link between the autonomous cell cycle oscillator and the remainder of the cell. We suggest the unclear yet regulatory effect of phosphorylation on the added components, and discuss many unreported points regarding the temporal evolution of the cell cycle and its components. To better visualize the results regardless of the programming background we developed an Android application that can be used to run the core and extended model of the fission yeast cell cycle step by step. Public Library of Science 2018-12-04 /pmc/articles/PMC6279014/ /pubmed/30513113 http://dx.doi.org/10.1371/journal.pone.0208515 Text en © 2018 Humaidan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Humaidan, Dania
Breinig, Frank
Helms, Volkhard
Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast
title Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast
title_full Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast
title_fullStr Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast
title_full_unstemmed Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast
title_short Adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast
title_sort adding phosphorylation events to the core oscillator driving the cell cycle of fission yeast
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279014/
https://www.ncbi.nlm.nih.gov/pubmed/30513113
http://dx.doi.org/10.1371/journal.pone.0208515
work_keys_str_mv AT humaidandania addingphosphorylationeventstothecoreoscillatordrivingthecellcycleoffissionyeast
AT breinigfrank addingphosphorylationeventstothecoreoscillatordrivingthecellcycleoffissionyeast
AT helmsvolkhard addingphosphorylationeventstothecoreoscillatordrivingthecellcycleoffissionyeast