Cargando…
Detecting medical prescriptions suspected of fraud using an unsupervised data mining algorithm
Nowadays, health insurance companies face various types of fraud, like phantom billing, up-coding, and identity theft. Detecting such frauds is thus of vital importance to reduce and eliminate corresponding financial losses. We used an unsupervised data mining algorithm and implemented an outlier de...
Autores principales: | Haddad Soleymani, Mohammad, Yaseri, Mehdi, Farzadfar, Farshad, Mohammadpour, Adel, Sharifi, Farshad, Kabir, Mohammad Javad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279664/ https://www.ncbi.nlm.nih.gov/pubmed/30460618 http://dx.doi.org/10.1007/s40199-018-0227-z |
Ejemplares similares
-
Detecting Diseases in Medical Prescriptions Using Data Mining Tools and Combining Techniques
por: Teimouri, Mehdi, et al.
Publicado: (2016) -
Prescription pattern analysis of Type 2 Diabetes Mellitus: a cross-sectional study in Isfahan, Iran
por: Ziad, Elnaz, et al.
Publicado: (2023) -
Relation between stress, time management, and academic achievement in preclinical medical education: A systematic review and meta-analysis
por: Ahmady, Soleiman, et al.
Publicado: (2021) -
Warning against a Prescription Fraud
Publicado: (1913) -
Data mining application to healthcare fraud detection: a two-step unsupervised clustering method for outlier detection with administrative databases
por: Massi, Michela Carlotta, et al.
Publicado: (2020)