Cargando…
Adaptive particle representation of fluorescence microscopy images
Modern microscopes create a data deluge with gigabytes of data generated each second, and terabytes per day. Storing and processing this data is a severe bottleneck, not fully alleviated by data compression. We argue that this is because images are processed as grids of pixels. To address this, we p...
Autores principales: | Cheeseman, Bevan L., Günther, Ulrik, Gonciarz, Krzysztof, Susik, Mateusz, Sbalzarini, Ivo F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279843/ https://www.ncbi.nlm.nih.gov/pubmed/30514837 http://dx.doi.org/10.1038/s41467-018-07390-9 |
Ejemplares similares
-
A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images
por: Afshar, Yaser, et al.
Publicado: (2016) -
Stability selection enables robust learning of differential equations from limited noisy data
por: Maddu, Suryanarayana, et al.
Publicado: (2022) -
STENCIL-NET for equation-free forecasting from data
por: Maddu, Suryanarayana, et al.
Publicado: (2023) -
Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images
por: Helmuth, Jo A, et al.
Publicado: (2010) -
Fluorescence microscopy tensor imaging representations for large-scale dataset analysis
por: Vinegoni, Claudio, et al.
Publicado: (2020)