Cargando…
Lifelong Learning of Spatiotemporal Representations With Dual-Memory Recurrent Self-Organization
Artificial autonomous agents and robots interacting in complex environments are required to continually acquire and fine-tune knowledge over sustained periods of time. The ability to learn from continuous streams of information is referred to as lifelong learning and represents a long-standing chall...
Autores principales: | Parisi, German I., Tani, Jun, Weber, Cornelius, Wermter, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279894/ https://www.ncbi.nlm.nih.gov/pubmed/30546302 http://dx.doi.org/10.3389/fnbot.2018.00078 |
Ejemplares similares
-
Self-organizing neural integration of pose-motion features for human action recognition
por: Parisi, German I., et al.
Publicado: (2015) -
Learning Then, Learning Now, and Every Second in Between: Lifelong Learning With a Simulated Humanoid Robot
por: Logacjov, Aleksej, et al.
Publicado: (2021) -
Compositional Learning of Human Activities With a Self-Organizing Neural Architecture
por: Mici, Luiza, et al.
Publicado: (2019) -
Learning indoor robot navigation using visual and sensorimotor map information
por: Yan, Wenjie, et al.
Publicado: (2013) -
Map-based experience replay: a memory-efficient solution to catastrophic forgetting in reinforcement learning
por: Hafez, Muhammad Burhan, et al.
Publicado: (2023)