Cargando…
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
Conventional machine learning approaches for predicting material properties from elemental compositions have emphasized the importance of leveraging domain knowledge when designing model inputs. Here, we demonstrate that by using a deep learning approach, we can bypass such manual feature engineerin...
Autores principales: | Jha, Dipendra, Ward, Logan, Paul, Arindam, Liao, Wei-keng, Choudhary, Alok, Wolverton, Chris, Agrawal, Ankit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279928/ https://www.ncbi.nlm.nih.gov/pubmed/30514926 http://dx.doi.org/10.1038/s41598-018-35934-y |
Ejemplares similares
-
Enabling deeper learning on big data for materials informatics applications
por: Jha, Dipendra, et al.
Publicado: (2021) -
Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design
por: Mao, Yuwei, et al.
Publicado: (2022) -
Moving closer to experimental level materials property prediction using AI
por: Jha, Dipendra, et al.
Publicado: (2022) -
ElemeNT: a computational tool for detecting core promoter elements
por: Sloutskin, Anna, et al.
Publicado: (2015) -
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2019)