Cargando…
Efficacy of a Bicistronic Vector for Correction of Sandhoff Disease in a Mouse Model
G(M2) gangliosidoses are a family of severe neurodegenerative disorders resulting from a deficiency in the β-hexosaminidase A enzyme. These disorders include Tay-Sachs disease and Sandhoff disease, caused by mutations in the HEXA gene and HEXB gene, respectively. The HEXA and HEXB genes are required...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279944/ https://www.ncbi.nlm.nih.gov/pubmed/30534578 http://dx.doi.org/10.1016/j.omtm.2018.10.011 |
Sumario: | G(M2) gangliosidoses are a family of severe neurodegenerative disorders resulting from a deficiency in the β-hexosaminidase A enzyme. These disorders include Tay-Sachs disease and Sandhoff disease, caused by mutations in the HEXA gene and HEXB gene, respectively. The HEXA and HEXB genes are required to produce the α and β subunits of the β-hexosaminidase A enzyme, respectively. Using a Sandhoff disease mouse model, we tested for the first time the potential of a comparatively lower dose (2.04 × 10(13) vg/kg) of systemically delivered single-stranded adeno-associated virus 9 expressing both human HEXB and human HEXA cDNA under the control of a single promoter with a P2A-linked bicistronic vector design to correct the neurological phenotype. A bicistronic design allows maximal overexpression and secretion of the Hex A enzyme. Neonatal mice were injected with either this ssAAV9-HexB-P2A-HexA vector or a vehicle solution via the superficial temporal vein. An increase in survival of 56% compared with vehicle-injected controls and biochemical analysis of the brain tissue and serum revealed an increase in enzyme activity and a decrease in brain G(M2) ganglioside buildup. This is a proof-of-concept study showing the “correction efficacy” of a bicistronic AAV9 vector delivered intravenously for G(M2) gangliosidoses. Further studies with higher doses are warranted. |
---|