Cargando…
A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
BACKGROUND: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and cl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Journal of Biomedical Physics and Engineering
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280112/ https://www.ncbi.nlm.nih.gov/pubmed/30568931 |
_version_ | 1783378604233588736 |
---|---|
author | Fooladi, M. Sharini, H. Masjoodi, S. Khodamoradi, E. |
author_facet | Fooladi, M. Sharini, H. Masjoodi, S. Khodamoradi, E. |
author_sort | Fooladi, M. |
collection | PubMed |
description | BACKGROUND: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets. OBJECTIVE: We classified patients with relapsing-remitting multiple sclerosis (RRMS) from healthy subjects using QMTI and T1 longitudinal relaxation time data of brain white matter, then the performance of three ANN-based classifiers have been investigated. MATERIALS AND METHODS: The input features of ANN algorithms, including multilayer perceptron (MLP), radial basis function (RBF) and ensemble neural networks based on Akaike information criterion (ENN-AIC) were extracted in the form of QMTI and T1 mean values from parametric maps. The ANNs quantitative performance is measured by the standard evaluation of confusion matrix criteria. RESULTS: The results indicate that ENN-AIC-based classification method has achieved 90% accuracy, 92% sensitivity and 86% precision compared to other ANN models. NPV, FPR and FDR values were found to be 0.933, 0.125 and 0.133, respectively, according to the proposed ENN-AIC model. A graphical representation of how to track actual data by the predictive values derived from ANN algorithms, was also presented. CONCLUSION: It has been demonstrated that ENN-AIC as an effective neural network improves the quality of classification results compared to MLP and RBF.In addition, this research provides a new direction to classify a large amount of quantitative MRI data that can help the physician in a correct MS diagnosis. |
format | Online Article Text |
id | pubmed-6280112 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Journal of Biomedical Physics and Engineering |
record_format | MEDLINE/PubMed |
spelling | pubmed-62801122018-12-19 A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis Fooladi, M. Sharini, H. Masjoodi, S. Khodamoradi, E. J Biomed Phys Eng Original Article BACKGROUND: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets. OBJECTIVE: We classified patients with relapsing-remitting multiple sclerosis (RRMS) from healthy subjects using QMTI and T1 longitudinal relaxation time data of brain white matter, then the performance of three ANN-based classifiers have been investigated. MATERIALS AND METHODS: The input features of ANN algorithms, including multilayer perceptron (MLP), radial basis function (RBF) and ensemble neural networks based on Akaike information criterion (ENN-AIC) were extracted in the form of QMTI and T1 mean values from parametric maps. The ANNs quantitative performance is measured by the standard evaluation of confusion matrix criteria. RESULTS: The results indicate that ENN-AIC-based classification method has achieved 90% accuracy, 92% sensitivity and 86% precision compared to other ANN models. NPV, FPR and FDR values were found to be 0.933, 0.125 and 0.133, respectively, according to the proposed ENN-AIC model. A graphical representation of how to track actual data by the predictive values derived from ANN algorithms, was also presented. CONCLUSION: It has been demonstrated that ENN-AIC as an effective neural network improves the quality of classification results compared to MLP and RBF.In addition, this research provides a new direction to classify a large amount of quantitative MRI data that can help the physician in a correct MS diagnosis. Journal of Biomedical Physics and Engineering 2018-12-01 /pmc/articles/PMC6280112/ /pubmed/30568931 Text en Copyright: © Journal of Biomedical Physics and Engineering http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Fooladi, M. Sharini, H. Masjoodi, S. Khodamoradi, E. A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis |
title | A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
|
title_full | A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
|
title_fullStr | A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
|
title_full_unstemmed | A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
|
title_short | A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
|
title_sort | novel classification method using effective neural network and quantitative magnetization transfer imaging of brain white matter in relapsing remitting multiple sclerosis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280112/ https://www.ncbi.nlm.nih.gov/pubmed/30568931 |
work_keys_str_mv | AT fooladim anovelclassificationmethodusingeffectiveneuralnetworkandquantitativemagnetizationtransferimagingofbrainwhitematterinrelapsingremittingmultiplesclerosis AT sharinih anovelclassificationmethodusingeffectiveneuralnetworkandquantitativemagnetizationtransferimagingofbrainwhitematterinrelapsingremittingmultiplesclerosis AT masjoodis anovelclassificationmethodusingeffectiveneuralnetworkandquantitativemagnetizationtransferimagingofbrainwhitematterinrelapsingremittingmultiplesclerosis AT khodamoradie anovelclassificationmethodusingeffectiveneuralnetworkandquantitativemagnetizationtransferimagingofbrainwhitematterinrelapsingremittingmultiplesclerosis AT fooladim novelclassificationmethodusingeffectiveneuralnetworkandquantitativemagnetizationtransferimagingofbrainwhitematterinrelapsingremittingmultiplesclerosis AT sharinih novelclassificationmethodusingeffectiveneuralnetworkandquantitativemagnetizationtransferimagingofbrainwhitematterinrelapsingremittingmultiplesclerosis AT masjoodis novelclassificationmethodusingeffectiveneuralnetworkandquantitativemagnetizationtransferimagingofbrainwhitematterinrelapsingremittingmultiplesclerosis AT khodamoradie novelclassificationmethodusingeffectiveneuralnetworkandquantitativemagnetizationtransferimagingofbrainwhitematterinrelapsingremittingmultiplesclerosis |