Cargando…

Application of Different methods for Reducing Radiation Dose to Breast during MDCT

The increased use of computed tomography (CT) and its high radiation dose have led to great concerns about its potential for radiation induced cancer risks. Breast is a radiosensitive tissue based on tissue weighting factors assigned by the International Commission on Radiological Protection (ICRP)....

Descripción completa

Detalles Bibliográficos
Autores principales: M., Keshtkar, V., Saba, M. A., Mosleh-Shirazi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Journal of Biomedical Physics and Engineering 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280114/
https://www.ncbi.nlm.nih.gov/pubmed/30568923
Descripción
Sumario:The increased use of computed tomography (CT) and its high radiation dose have led to great concerns about its potential for radiation induced cancer risks. Breast is a radiosensitive tissue based on tissue weighting factors assigned by the International Commission on Radiological Protection (ICRP). Moreover, the dose is maximal on the surface of the patient. Therefore, strategies should be taken to reduce radiation dose to the breast. The aim of this review is to introduce methods used for reducing radiation dose to breast in thoracic CT and review related performed studies. The literature indicates that bismuth shielding increases image noise and CT numbers as well as introducing streak artifacts. Tube current modulation (TCM) technique and iterative reconstruction algorithms can provide some levels of dose reduction to radiosensitive organs and superior image quality without the disadvantages of bismuth shielding. However, they are not available on all CT scanners, especially in low-income countries. Such centers may have to continue using bismuth shields to reduce the dose until these superior techniques become available at lower costs in all CT scanners. Furthermore, design and manufacture of new shields with the lower impact on image quality are desirable.