Cargando…
Investigating the ability of non-invasive measures of cardiac output to detect a reduction in blood volume resulting from venesection in spontaneously breathing subjects
BACKGROUND: Monitoring cardiac output (CO) in shocked patients provides key etiological information and can be used to guide fluid resuscitation to improve patient outcomes. Previously this relied on invasive monitoring, restricting its use in the Emergency Department (ED) setting. The development o...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280441/ https://www.ncbi.nlm.nih.gov/pubmed/30514343 http://dx.doi.org/10.1186/s13049-018-0571-5 |
_version_ | 1783378673485742080 |
---|---|
author | Bussmann, Benjamin Mothibe Hulme, William Tang, Andrew Harris, Tim |
author_facet | Bussmann, Benjamin Mothibe Hulme, William Tang, Andrew Harris, Tim |
author_sort | Bussmann, Benjamin Mothibe |
collection | PubMed |
description | BACKGROUND: Monitoring cardiac output (CO) in shocked patients provides key etiological information and can be used to guide fluid resuscitation to improve patient outcomes. Previously this relied on invasive monitoring, restricting its use in the Emergency Department (ED) setting. The development of non-invasive devices (such as LiDCOrapid(v2) with CNAP™ and USCOM 1A), and ultrasound based measurements (Transthoracic echocardiography, inferior vena cava collapsibility index (IVCCI), carotid artery blood flow (CABF) and carotid artery corrected flow time (FTc)) enables stroke volume (SV) and CO to be measured non-invasively in the ED. We investigated the ability of these techniques to detect a change in CO resulting from a 500 ml reduction in circulating blood volume (CBV) following venesection in spontaneously breathing subjects. Additionally, we investigated if using incentive spirometry to standardise inspiratory effort improved the accuracy of IVC based measurements in spontaneously breathing subjects. METHODS: We recorded blood pressure, heart rate, IVCCI, CABF, FTc, transthoracic echocardiographic (TTE) SV and CO, USCOM 1A SV and CO, LIDCOrapidv2 SV, CO, Stroke volume variation (SVV) and pulse pressure variation (PPV) in 40 subjects immediately before and after venesection. The Log-Odds and coefficient of variation of the difference between pre- and post-venesection values for each technique were used to compare their ability to consistently detect CO changes resulting from a reduction in CBV resulting from venesection. RESULTS: TTE consistently detected a reduction in CO associated with venesection with an average decrease in measured CO of 0.86 L/min (95% CI 0.61 to 1.12) across subjects. None of the other investigated techniques changed in a consistent manner following venesection. The use of incentive spirometry improved the consistency with which IVC ultrasound was able to detect a reduction in CBV. CONCLUSIONS: In a population of spontaneously breathing patients, TTE is able to consistency detect a reduction in CO associated with venesection. |
format | Online Article Text |
id | pubmed-6280441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-62804412018-12-10 Investigating the ability of non-invasive measures of cardiac output to detect a reduction in blood volume resulting from venesection in spontaneously breathing subjects Bussmann, Benjamin Mothibe Hulme, William Tang, Andrew Harris, Tim Scand J Trauma Resusc Emerg Med Original Research BACKGROUND: Monitoring cardiac output (CO) in shocked patients provides key etiological information and can be used to guide fluid resuscitation to improve patient outcomes. Previously this relied on invasive monitoring, restricting its use in the Emergency Department (ED) setting. The development of non-invasive devices (such as LiDCOrapid(v2) with CNAP™ and USCOM 1A), and ultrasound based measurements (Transthoracic echocardiography, inferior vena cava collapsibility index (IVCCI), carotid artery blood flow (CABF) and carotid artery corrected flow time (FTc)) enables stroke volume (SV) and CO to be measured non-invasively in the ED. We investigated the ability of these techniques to detect a change in CO resulting from a 500 ml reduction in circulating blood volume (CBV) following venesection in spontaneously breathing subjects. Additionally, we investigated if using incentive spirometry to standardise inspiratory effort improved the accuracy of IVC based measurements in spontaneously breathing subjects. METHODS: We recorded blood pressure, heart rate, IVCCI, CABF, FTc, transthoracic echocardiographic (TTE) SV and CO, USCOM 1A SV and CO, LIDCOrapidv2 SV, CO, Stroke volume variation (SVV) and pulse pressure variation (PPV) in 40 subjects immediately before and after venesection. The Log-Odds and coefficient of variation of the difference between pre- and post-venesection values for each technique were used to compare their ability to consistently detect CO changes resulting from a reduction in CBV resulting from venesection. RESULTS: TTE consistently detected a reduction in CO associated with venesection with an average decrease in measured CO of 0.86 L/min (95% CI 0.61 to 1.12) across subjects. None of the other investigated techniques changed in a consistent manner following venesection. The use of incentive spirometry improved the consistency with which IVC ultrasound was able to detect a reduction in CBV. CONCLUSIONS: In a population of spontaneously breathing patients, TTE is able to consistency detect a reduction in CO associated with venesection. BioMed Central 2018-12-04 /pmc/articles/PMC6280441/ /pubmed/30514343 http://dx.doi.org/10.1186/s13049-018-0571-5 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Original Research Bussmann, Benjamin Mothibe Hulme, William Tang, Andrew Harris, Tim Investigating the ability of non-invasive measures of cardiac output to detect a reduction in blood volume resulting from venesection in spontaneously breathing subjects |
title | Investigating the ability of non-invasive measures of cardiac output to detect a reduction in blood volume resulting from venesection in spontaneously breathing subjects |
title_full | Investigating the ability of non-invasive measures of cardiac output to detect a reduction in blood volume resulting from venesection in spontaneously breathing subjects |
title_fullStr | Investigating the ability of non-invasive measures of cardiac output to detect a reduction in blood volume resulting from venesection in spontaneously breathing subjects |
title_full_unstemmed | Investigating the ability of non-invasive measures of cardiac output to detect a reduction in blood volume resulting from venesection in spontaneously breathing subjects |
title_short | Investigating the ability of non-invasive measures of cardiac output to detect a reduction in blood volume resulting from venesection in spontaneously breathing subjects |
title_sort | investigating the ability of non-invasive measures of cardiac output to detect a reduction in blood volume resulting from venesection in spontaneously breathing subjects |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280441/ https://www.ncbi.nlm.nih.gov/pubmed/30514343 http://dx.doi.org/10.1186/s13049-018-0571-5 |
work_keys_str_mv | AT bussmannbenjaminmothibe investigatingtheabilityofnoninvasivemeasuresofcardiacoutputtodetectareductioninbloodvolumeresultingfromvenesectioninspontaneouslybreathingsubjects AT hulmewilliam investigatingtheabilityofnoninvasivemeasuresofcardiacoutputtodetectareductioninbloodvolumeresultingfromvenesectioninspontaneouslybreathingsubjects AT tangandrew investigatingtheabilityofnoninvasivemeasuresofcardiacoutputtodetectareductioninbloodvolumeresultingfromvenesectioninspontaneouslybreathingsubjects AT harristim investigatingtheabilityofnoninvasivemeasuresofcardiacoutputtodetectareductioninbloodvolumeresultingfromvenesectioninspontaneouslybreathingsubjects |