Cargando…

Global transcriptional activity dynamics reveal functional enhancer RNAs

Active enhancers of the human genome generate long noncoding transcripts known as enhancer RNAs (eRNAs). How dynamic transcriptional changes of eRNAs are physically and functionally linked with target gene transcription remains unclear. To investigate the dynamic functional relationships among eRNAs...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yoon Jung, Xie, Peng, Cao, Lian, Zhang, Michael Q., Kim, Tae Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280751/
https://www.ncbi.nlm.nih.gov/pubmed/30352805
http://dx.doi.org/10.1101/gr.233486.117
Descripción
Sumario:Active enhancers of the human genome generate long noncoding transcripts known as enhancer RNAs (eRNAs). How dynamic transcriptional changes of eRNAs are physically and functionally linked with target gene transcription remains unclear. To investigate the dynamic functional relationships among eRNAs and target promoters, we obtained a dense time series of GRO-seq and ChIP-seq data to generate a time-resolved enhancer activity map of a cell undergoing an innate antiviral immune response. Dynamic changes in eRNA and pre-mRNA transcription activities suggest distinct regulatory roles of enhancers. Using a criterion based on proximity and transcriptional inducibility, we identified 123 highly confident pairs of virus-inducible enhancers and their target genes. These enhancers interact with their target promoters transiently and concurrently at the peak of gene activation. Accordingly, their physical disassociation from the promoters is likely involved in post-induction repression. Functional assessments further establish that these eRNAs are necessary for full induction of the target genes and that a complement of inducible eRNAs functions together to achieve full activation. Lastly, we demonstrate the potential for eRNA-targeted transcriptional reprogramming through targeted reduction of eRNAs for a clinically relevant gene, TNFSF10, resulting in a selective control of interferon-induced apoptosis.