Cargando…

KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system

Despite the success of animal cloning by somatic cell nuclear transfer (SCNT) in many species, the method is limited by its low efficiency. After zygotic genome activation (ZGA) during mouse development, a large number of endogenous retroviruses (ERVs) are expressed, including the murine endogenous...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Lei, Song, Lishuang, Liu, Xuefei, Bai, Lige, Li, Guangpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280793/
https://www.ncbi.nlm.nih.gov/pubmed/30389724
http://dx.doi.org/10.15252/embr.201846240
Descripción
Sumario:Despite the success of animal cloning by somatic cell nuclear transfer (SCNT) in many species, the method is limited by its low efficiency. After zygotic genome activation (ZGA) during mouse development, a large number of endogenous retroviruses (ERVs) are expressed, including the murine endogenous retrovirus‐L (MuERVL/MERVL). In this study, we generate a series of MERVL reporter mouse strains to detect the ZGA event in embryos. We show that the majority of SCNT embryos do not undergo ZGA, and H3K27me3 prevents SCNT reprogramming. Overexpression of the H3K27me3‐specific demethylase KDM6A, but not of KDM6B, improves the efficiency of SCNT. Conversely, knockdown of KDM6B not only facilitates ZGA, but also impedes ectopic Xist expression in SCNT reprogramming. Furthermore, knockdown of KDM6B increases the rate of SCNT‐derived embryonic stem cells from Duchenne muscular dystrophy embryos. These results not only provide insight into the mechanisms underlying failures of SCNT, but also may extend the applications of SCNT.