Cargando…
Estimation of paddy rice leaf area index using machine learning methods based on hyperspectral data from multi-year experiments
The performance of three machine learning methods (support vector regression, random forests and artificial neural network) for estimating the LAI of paddy rice was evaluated in this study. Traditional univariate regression models involving narrowband NDVI with optimized band combinations as well as...
Autores principales: | Wang, Li, Chang, Qingrui, Yang, Jing, Zhang, Xiaohua, Li, Fenling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281281/ https://www.ncbi.nlm.nih.gov/pubmed/30517144 http://dx.doi.org/10.1371/journal.pone.0207624 |
Ejemplares similares
-
Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods
por: Zhang, Juanjuan, et al.
Publicado: (2021) -
Hyperspectral Estimation of Winter Wheat Leaf Area Index Based on Continuous Wavelet Transform and Fractional Order Differentiation
por: Li, Changchun, et al.
Publicado: (2021) -
Hyperspectral prediction of leaf area index of winter wheat in irrigated and rainfed fields
por: Li, Guangxin, et al.
Publicado: (2017) -
Automatic estimation of heading date of paddy rice using deep learning
por: Desai, Sai Vikas, et al.
Publicado: (2019) -
Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages
por: Din, Mairaj, et al.
Publicado: (2017)